

EX55X-3LCD80

10Gbps 1550nm 80KM XFP Optical Transceiver

- XFP MSA Rev 4.5 Compliant
- Data rate from 9.95Gbps to 11.1Gbps
- No Reference Clock required
- Cooled 1550 nm EML and APD receiver
- link length up to 80km
- +3.3V Supply Voltage
- Low Power Dissipation 2.5 W Maximum
- > XFI and lineside loopback Mode Supported
- ➢ -5°C to 70°C Operating Case Temperature
- Diagnostic Performance Monitoring of module Temperature, Supply Voltages, laser bias current, transmit optical power, and receive optical power
- RoHS6 compliant (lead free)

Applications

- SONET OC-192&SDH STM 64 (with / without FEC)
- > 10GBASE ZR/ZW (with / without FEC)
- > 10G Fiber Channel

Description

ETU-Link 80km XFP EX55X-3LCD80 Transceiver exhibits excellent wavelength stability, Designed for 10G SDH/SONET, 10GBASE-ZR and 10G Fiber- Channel applications.

The transceiver consists of two sections: The transmitter section incorporates a cooled EML laser. And the receiver section consists of an APD photodiode integrated with a TIA. All modules satisfy class I laser safety requirements. ETU-Link XFP transceiver provides an enhanced monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, and received optical power and transceiver supply voltage.

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage 1	Vcc3	-0.5		4.0	V	
Maximum Supply Voltage 2	Vcc5	-0.5		6.0	V	
Storage Temperature	TS	-40		85	°C	
Case Operating Temperature	Tcase	-5		70	°C	

Electrical Characteristics (TOP = -5 to 70, VCC3 = 3.13 to 3.45 Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Main Supply Voltage	Vcc5	4.75		5.25	V	
Supply Voltage #2	Vcc3	3.13		3.45	V	
Supply Current – Vcc5 supply	Icc5			320	mA	
Supply Current – Vcc3 supply	Icc3			400	mA	
Module total power	Р			3.5	W	1
Transmitter						
Input differential impedance	Rin		100		Ω	2
Differential data input swing	Vin,pp	120		820	mV	
Transmit Disable Voltage	VD	2.0		Vcc	V	3
Transmit Enable Voltage	VEN	GND		GND+ 0.8	V	
Transmit Disable Assert Time				10	us	
Receiver						
Differential data output swing	Vout,pp	340	650	850	mV	4
Data output rise time	tr			38	ps	5
Data output fall time	tf			38	ps	5
LOS Fault	VLOS fault	Vcc – 0.5		VccHOST	V	6
LOS Normal	VLOS norm	GND		GND+0.5	V	6
Power Supply Rejection	PSR		See No	ote 6 below		7

Notes:

- 1) Maximum total power value is specified across the full temperature and voltage range.
- 2) After internal AC coupling.
- 3) Or open circuit.
- 4) Into 100 ohms differential termination.
- 5) These are unfiltered 20-80% values
- Loss of Signal is open collector to be pulled up with a 4.7k 10kohm resistor to 3.15 3.6V. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 7) Per Section 2.7.1. In the XFP MSA Specification1.

Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Ref.	
Transmitter							
Output Optical Power	Pf	0		4	dBm		
Optical Wavelength	λ	1530	1550	1570	nm		
Sidemode Suppression ratio	SMSRmin	30			dB		
Optical Extinction Ratio	ER	9			dB		
Tx Jitter Generation(peak-to-peak)	Txj1			0.1	UI		
Tx Jitter Generation(RMS)	Txj2			0.01	UI		
Transmitter and Dispersion Penalty	TDP			3.2	dB		
Average Launch power of OFF transmitter	POFF			-30	dBm		
Relative Intensity Noise	RIN			-130	dB/Hz		
Receiver							
Receiver Sensitivity	RSENS			-24	dBm	1	
Input Saturation Power (Overload)	Psat	-7			dBm		
Wavelength Range	λ _c	1270		1610	nm		
Receiver Reflectance	Rrx			-27	dB		
LOS De-Assert	LOSD			-28	dBm		
LOS Assert	LOSA	-34			dBm		
LOS Hysteresis		0.5			dB		

Notes: Measured with worst ER; BER<10⁻¹²@10.3Gbps,2³¹ – 1 PRBS.

Pin Assignment

Diagram of Host Board Connector Block Pin Numbers and Name							
Pin	Logic	Symbol	Name/Description	Ref			
1		GND	Module Ground	1			
2		VEE5	Optional –5.2 Power Supply – Not required				
2		Mad Dasal	Module De-select; When held low allows the module to respond to 2-wire				
3	LVTTL-I	Mod-Desel	serial interface commands				
4	LVTTL-O	Interrupt	Interrupt (bar); Indicates presence of an important condition which can be	2			
-	LVIIL-O	interrupt	read over the serial 2-wire interface	2			
5	LVTTL-I	TX_DIS	Transmitter Disable; Transmitter laser source turned off				
6		VCC5	+5 Power Supply				
7		GND	Module Ground	1			
8		VCC3	+3.3V Power Supply				
9		VCC3	+3.3V Power Supply				
10	LVTTL-I	SCL	Serial 2-wire interface clock	2			
11	LVTTLI/O	SDA	Serial 2-wire interface data line	2			
12	LVTTL-O	Mod_Abs	Module Absent; Indicates module is not present. Grounded in the module.	2			
13			Module Not Ready; ETU-LINK defines it as a logical OR between	2			
13	LVTTL-O	Mod_NR	RX_LOS and Loss of Lock in TX/RX.	2			
14	LVTTL-O	RX_LOS	Receiver Loss of Signal indicator	2			
15		GND	Module Ground	1			
16		GND	Module Ground	1			
17	CML-O	RD-	Receiver inverted data output				
18	CML-O	RD+	Receiver non-inverted data output				
19		GND	Module Ground	1			
20		VCC2	+1.8V Power Supply – Not required				
21	LVTTL-I	P Down/RST	Power Down; When high, places the module in the low power stand-by				
21		F_DOWN/RST	mode and on the falling edge of P_Down initiates a module reset				
			Reset; The falling edge initiates a complete reset of the module including				
			the 2-wire serial interface, equivalent to a power cycle.				
22		VCC2	+1.8V Power Supply – Not required				
23		GND	Module Ground	1			
24	PECL-I	RefCLK+	Reference Clock non-inverted input, AC coupled on the host board – Not	3			
24	PEGL-I	Reiclk+	required	3			
25		DofCL K	Reference Clock inverted input, AC coupled on the host board – Not	3			
25	PECL-I	RefCLK-	required	S			
26		GND	Module Ground	1			
27		GND	Module Ground	1			
28	CML-I	TD-	Transmitter inverted data input				
29	CML-I	TD+	Transmitter non-inverted data input				
30		GND	Module Ground	1			

Diagram of Host Board Connector Block Pin Numbers and Name

Notes:

1) Module circuit ground is isolated from module chassis ground within the module.

2) Open collector; should be pulled up with 4.7k - 10kohms on host board to a voltage between 3.15V and 3.6V.

3) A Reference Clock input is not required by the EX55X-3LCD80. If present, it will be ignored.

General Specifications

Parameter	Symbol	Min	Тур	Max	Units	Ref.
Bit Rate	BR	9.95		11.3	Gb/s	1
Bit Error Ratio	BER			10 ⁻¹²		2
Max. Supported Link Length	LMAX		40		km	1

Notes:

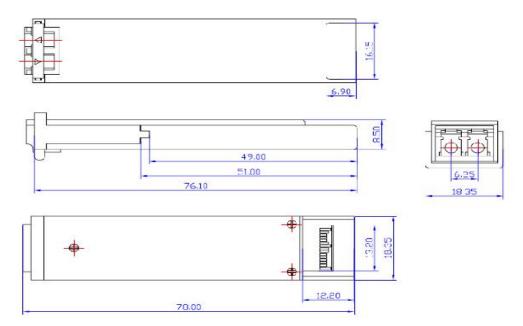
- 1) 10GBASE-ER/EW.
- 2) Tested with 10.3Gbps, $2^{31} 1$ PRBS

Digital Diagnostic Functions

As defined by the XFP MSA1, ETU-LINK XFP transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

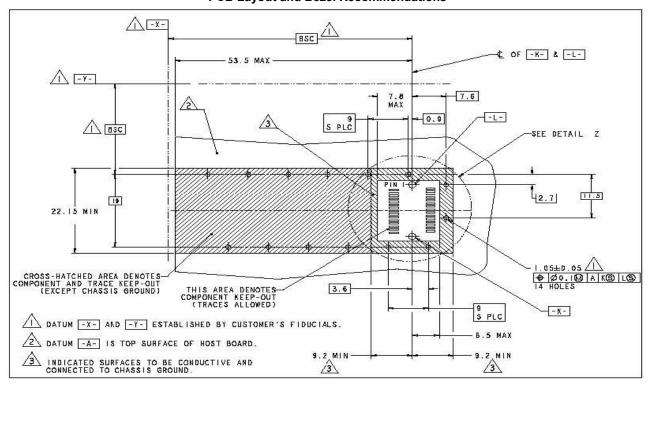
- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage

It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

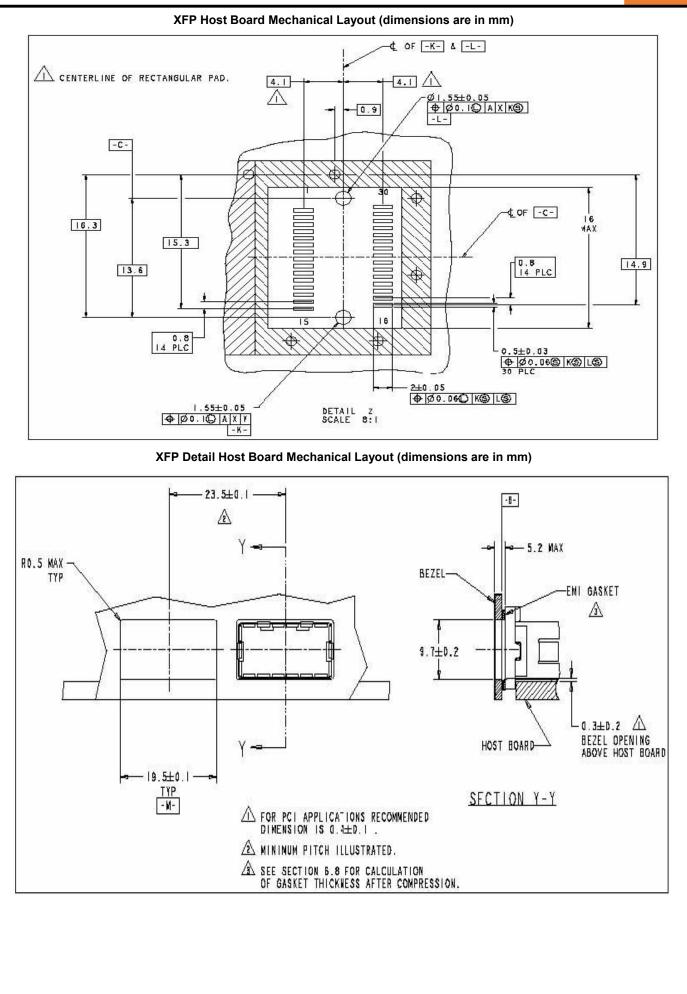

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the XFP transceiver into those segments of its memory map that are not write-protected.

The negative edge clocks data from the XFP transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information including memory map definitions, please see the XFP MSA Specification.


Mechanical Specifications

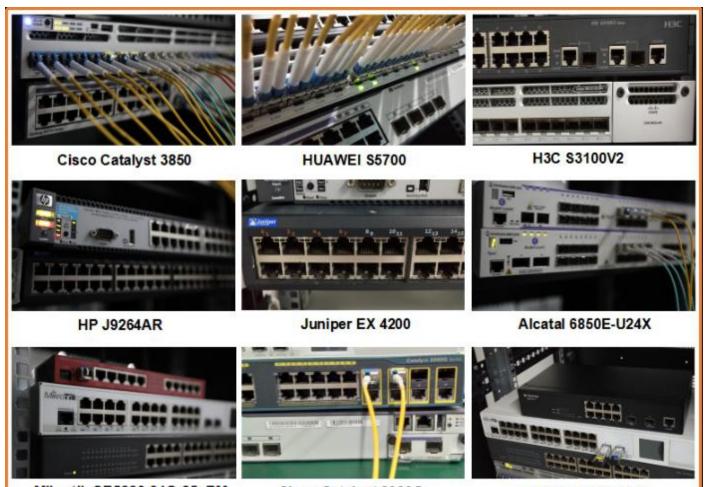
ETU-LINK's XFP transceivers are compliant with the dimensions defined by the XFP Multi-Sourcing Agreement (MSA).



XFP Transceiver (dimensions are in mm)

PCB Layout and Bezel Recommendations

PCB Layout and Bezel Recommendations


Regulatory Compliance

Feature	Reference	Performance	
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards	
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B	Compatible with standards	
Electromagnetic interference (EMI)	(CISPR 22A)		
Leser File Sefety	FDA 21CFR 1040.10, 1040.11 IEC/EN	Class 1 laser product	
Laser Eye Safety	60825-1, 2		
Component Recognition	IEC/EN 60950, UL	Compatible with standards	
ROHS	2002/95/EC	Compatible with standards	
EMC	EN61000-3	Compatible with standards	

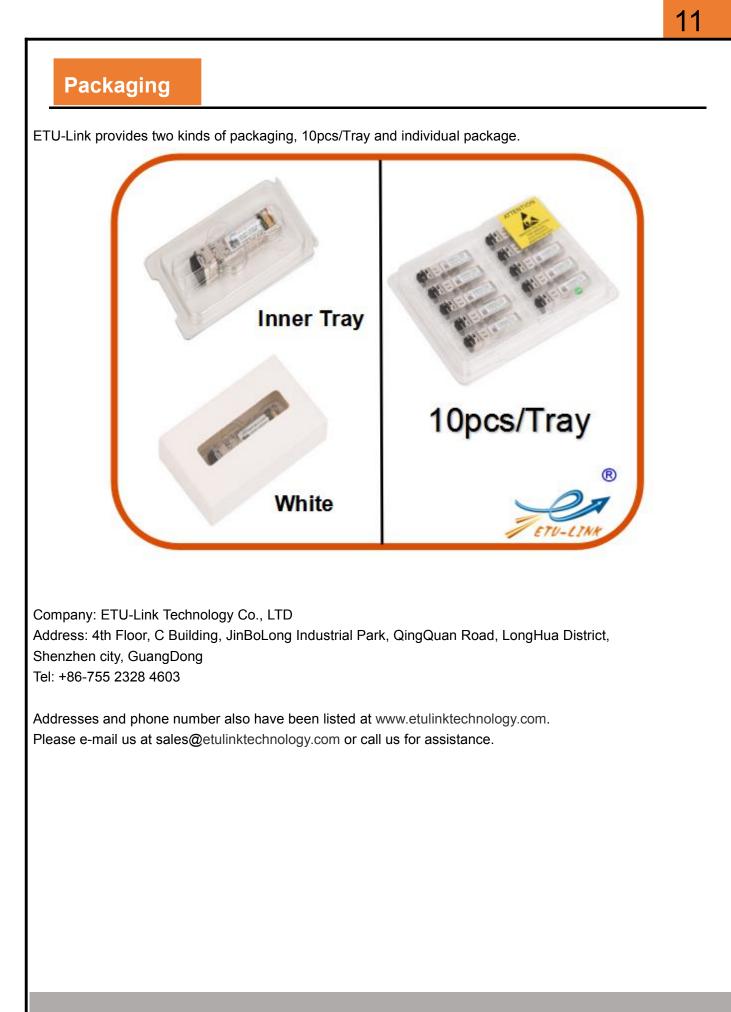
Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Mikrotik CR5226-24G-25+RM

Cisco Catalyst 2960G


Volktek MEN-4110

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com All Rights Reserved