

EDOP800-2OPxx

800Gbps OSFP112 To 2x 400G OSFP Passive High Speed Cable

PRODUCT FEATURES

- Products Compliance with CMIS, OSFP_MSA
- > Ethernet-Compliance with IEEE802.3ck
- > Support 112G (PAM4) electrical data rates/channel
- > Support I2C two line string interface, easy to control
- > Support for hot plugging
- Low crosstalk/Low power
- > Maximum Link Length: up to 2m
- ROHS Compliance

APPLICATIONS

- > Telecommunications equipment
- > Servers, Routers, Switches
- > Central office, Cellular infrastructure
- > Servers, Storage

Description

The 800G OSFP112 to 2x400Gb/s OSFP Passive Direct Attach Copper Twinax Cable is designed for use in 800GBASE Ethernet, QSFP112 is the module and cage/connector system based on current OSFP, targeting to support the 112Gb/s per lane speed in a 8x lane OSFP system and to enable the QSFP 800G interconnect ecosystem. This will greatly help the legacy OSFP users upgrade the link bandwidth to 800G per port with lower cost and shorter transition time.

Information

Part No.	Description
EDOP800-2OPxx-30	800Gbps OSFP112 To 2x 400G OSFP Passive High Speed Cable 30AWG 0.5~1M
EDOP800-2OPxx-28	800Gbps OSFP112 To 2x 400G OSFP Passive High Speed Cable 28AWG 1.5~3M

Notes:

- 1. where "x" denotes cable length in meters. Examples are as follows:
- 2. xx = 0.5 for 0.5m, x=1 for 1m

Wiring Diagram

	WIRE	STA	ART			END	WIRE	START			EN	D
		GND	X1.60		X2. 30	GND		GND	X1.54		X3. 30	GND
		TX1+	X1.59	>	X2.29	RX1+		TX5+	X1.53	>	X3. 29	RX1+
		TX1-	X1.58	>	X2.28	RX1-		TX5-	X1.52	>	X3. 28	RX1-
		GND	X1.57		X2.27	GND		GND	X1.51		X3. 27	GND
		GND	X1.30		X2.60	GND	1	GND	X1.24		X3. 60	GND
		RX1+	X1. 29		X2. 59	TX1+		RX5+	X1.23	<	X3.59	TX1+
		RX1-	X1.28	<	X2. 58	TX1-	1	RX5-	X1.22	<	X3.58	TX1-
		GND	X1.27	<	X2. 57	GND		GND	X1.21		X3. 57	GND
		GND	X1.1		X2. 31	GND	1	GND	X1.7		X3. 31	GND
		TX2+	X1.2	>	X2. 32	RX2+		TX6+	X1.8	>	X3. 32	RX2+
		TX2-	X1.3	>	X2. 33	RX2-		TX6-	X1.9	>	X3.33	RX2-
		GND	X1.4		X2.34	GND		GND	X1.10		X3.34	GND
		GND	X1. 31		X2.1	GND]	GND	X1.37		X3. 1	GND
		RX2+	X1.32	<	X2.2	TX2+		RX6+	X1.38	<	X3. 2	TX2+
		RX2-	X1.33	<	X2.3	TX2-	W 2	RX6-	X1.39	<	X3. 3	TX2-
	W 1	GND	X1.34		X2.4	GND		GND	X1.40		X3.4	GND
		GND	X1.57		X2. 27	GND		GND	X1.51		X3.27	GND
		TX3+	X1.56	>	X2.26	RX3+		TX7+	X1.50	>	X3. 26	RX3+
		TX3-	X1. 55	>	X2. 25	RX3-		TX7-	X1.49	>	X3.25	RX3-
		GND	X1. 54		X2.24	GND		GND	X1.48		X3. 24	GND
		GND	X1.27		X2.57	GND		GND	X1. 21		X3. 57	GND
		RX3+	X1.26	<	X2.56	TX3+		RX7+	X1.20	<	X3. 56	TX3+
		RX3-	X1.25	<	X2.55	TX3-		RX7-	X1. 19	<	X3.55	TX3-
		GND	X1.24		X2.54	GND		GND	X1.18		X2.54	GND
		GND	X1.4		X2. 34	GND		GND	X1.10		X2.34	GND
		TX4+	X1.5	>	X2.35	RX4+		TX8+	X1.11	>	X2.35	RX4+
		TX4-	X1.6	>	X2.36	RX4-		TX8-	X1.12	>	X2.36	RX4-
		GND	X1. 7		X2.37	GND		GND	X1.13		X2.37	GND
		GND	X1.34		X2.4	GND		GND	X1. 40		X2.4	GND
		RX4+	X1.35	<	X2.5	TX4+		RX8+	X1. 41	<	X2.5	TX4+
		RX4-	X1. 36	<	X2.6	TX4-		RX8-	X1.42	<	X2.6	TX4-
		GND	X1.37		X2.7	GND		GND	X1, 43		X2.7	GND

Electrical Performance

Optical Communications Products Alliance

ITEM		REQUIREMENT	TEST CONDITION	
(Differe	Cable Impedance	100±5Ω	Rise time of	
ntial	Paddle Card Impedance	100±10Ω	25ps (20 % - 80 %)	
ce)	Cable Termination Impedance	100±10Ω		
[Differential (Input/Output)Return loss S _{DD11} /S _{DD22]}		$\begin{aligned} \text{Return_loss}(f) \geq \begin{cases} 16.5 \cdot 2\sqrt{f} & 0.05 \leqslant f < 4.1 \\ 10.66 \cdot 14 \log_{10}(f/5.5) & 4.1 \leqslant f \leqslant 40 \end{cases} \end{aligned}$ Where f is the frequency in GHz Return loss(f) is the return loss at frequency f	10MHz≪f ≪40GHz	
[Differential to common- mode (Input/Output)Return loss S _{CD11} /S _{CD22]}		$\begin{array}{l} \mbox{Return_loss}(f) \geqslant \left\{ \begin{array}{ll} 22\text{-}10(f/26.56) & 0.05 \leqslant f < 26.56 \\ 15\text{-}3(f/26.56) & 26.56 \leqslant f \leqslant 40 \end{array} \right\} \\ \\ \mbox{Where } f & \mbox{is the frequency in GHz} \\ \mbox{Return_loss}(f) & \mbox{is the Differential to common-mode return} \\ \mbox{loss at frequency } f \end{array} \right.$	50MHz≤f ≤40GHz	
[Common-mode to Common-mode (Input/Output)Return loss S _{CC11} /S _{CC22]}		Return_loss(f) \geq 1.8dB $0.05 \leq f \leq 40$ Where f is the frequency in GHzReturn_loss(f) is the common-mode to common-modereturn loss at frequency f	50MHz≤f ≤40GHz	
差模插入损耗[Differential Insertion Loss (S _{DD21} Max.)]		(Differential InsertionLoss Max. For TPa to TPbExcluding Test fixture)Insertion _loss(f) \geq -19.75dB0.05 \leq f \leq 26.56Where f is the frequency in GHzInsertion Loss (f) Differential Insertion Loss at frequency f	50MHz≤f ≤40GHz	
[Insertion Loss Deviation] $-0.176*f - 0.7 \leq ILD \leq 0.176*f + 0.7$		50MHz≤f ≤ 26.56GHz		
Differential to common- mode Conversion Loss- Differential Insertion Loss(S _{CD21} -S _{DD21}) Conversion common-		$ \begin{array}{ c c c c } \mbox{Conversion} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	50MHz≤f ≤ 40GHz	

Optical Communications Products Alliance

	IL(f)	is	the cable assembly insertion loss	
[MDNEXT(multiple disturber near-end crosstalk)]	≥35dB @26.5GHz			10MHz≤f ≤26.5GHz
[Intra Skew]	10ps/m,			10MHz≤f ≤26.5GHz

Other Electrical Performance

ITEM	REQUIREMENT	TEST CONDITON	
[Low Level Contact Resistance]	70milliohms Max. From initial.	EIA-364-23:Apply a maximum voltage of 20mV And a current of 100 mA.	
Insulation Resistance	10Mohm(Min.)	EIA364-21:AC 300V 1minute	
[Dielectric Withstanding Voltage]	NO disruptive discharge.	EIA-364-20:Apply a voltage of 300 VDC for 1minute between adjacent terminals And between adjacent terminals and ground.	

Environment Performance

ITEM	REQUIREMENT	TEST CONDITON
[Operating Temp. Range]	0°C to +70°C	Cable operating temperature range.
[Storage Temp. Range	40°C to +85°C	Cable storage temperature range
(in packed condition)]	-40 C 10 +83 C	in packed condition.
[Thermal Cycling Non-	No evidence of physical damage	EIA-364-32D, Method A, -25 to 90C, 100
Powered]	No evidence of physical damage	cycles, 15 min. dwells
[Salt Spraying]	48 hours salt spraying after shell corrosive area less than 5%.	EIA-364-26
Mixed Flowing Gas	Pass electrical tests per 3.1 after stressing. (For connector only)	EIA-364-35 Class II,14 days.
Temp. Life	No evidence of physical damage	EIA-364-17C w/ RH, Damp heat 90°C at 85% RH for 500 hours then return to ambient
Cable Cold Bend	4H,No evidence of physical damage	Condition: -20°C±2°C, mandrel diameter is 6 times the cable diameter.

Mechanical and Physical Characteristics

ITEM	REQUIREMENT	TEST CONDITON		
Vibration	Pass electrical tests	Clamp & vibrate per EIA-364-28E,		
VIDIALION	per 3.1 after stressing.	TC-VII, test condition letter – D, 15 minutes		

Optical Communications Products Alliance

		in X, Y & Z axis.	
		Flex cable 180° for 20 cycles (±90° from	
	No evidence of physical	nominal position) at 12 cycles per minute	
Cable Flex	damage	with a 1.0kg load applied to the cable	
	damage	jacket. Flex in the boot area 90º in each	
		direction from vertical. Per EIA-364-41C	
	125N Min (OSEP)	No functional damage to module,	
Retention in Cage	No evidence of physical	connector, or cage with latching mechanism	
riotoniion in ougo	damage	activated.	
	Gamago	. Per OSFP _Specification_Rev5	
	90N Min.	Cable plug is fixtured with the bulk cable	
Cable Retention in Plug	No evidence of physical damage	hanging vertically. A 90N axial load is	
g		applied (gradually) to the cable jacket and	
		held for 1 minute. Per EIA-364-38B	
Mechanical Shock	Pass electrical tests	Clamp and shock per EIA-364-27B, TC-G,3	
	Per 3.1 after stressing.	times in 6 directions, 100g, 6ms.	
		Module to be inserted into connector and	
Cable Plug Insertion	40N Max.(55N) OSFP	cage with latch mechanism engaged.	
5		(55N if the cage has riding heatsink)	
		Per OSFP _Specification_Rev5	
		Module to be removed from connector and	
Cable plug Extraction	30N Max. (45N) OSFP	cage with latching mechanism disengaged.	
		(45N if the cage has riding heatsink)	
		Per OSFP _Specification_Rev5_0 5.0	
		EIA-364-09, perform plug &unplug	
Durability	50 cycles,No evidence of	cycles:Plug and receptacle mate rate:	
,	physical damage	250times/hour. 50times for QSFP28/SFP28	
		module (CONNECTOR TO PCB)	

Outline drawing

Revision History

Version No.	Date	Description
1.0	May 17, 2024	Preliminary datasheet

Company: ETU-Link Technology Co., LTD

Production base: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince, China 518109

R&D base: Floor 4, Building 4, Nanshan Yungu Phase Ll, Taoyuan Community, XiliStreet,Nanshan District, Shenzhen

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.