

Rev	Date	Modified by	Description
A0	2023		

Product Specifications

400Gbps OSFP56 Passive High Speed Cable

PN: EODP40X-330CNxx

Features

- Products Compliance with SFF-8636, OSFP_MSA
- Ethernet-Compliance with IEEE802.3cd
- Support 56G (PAM4) electrical data rates/channel
- Support I2C two line string interface, easy to control
- Support for hot plugging
- Low crosstalk/Low power
- Maximum Link Length: up to 3m
- ROHS Compliance

Applications

- > 400G Ethernet
- SWITCH/ Router
- > Data storage and communication industry
- Data center, cloud server

Description

The 400G OSFP56 Passive Direct Attach Copper Twinax Cable is designed for use in 400GBASE Ethernet. OSFP56 is the module and cage/connector system based on current OSFP, targeting to support the 56Gb/s per lane speed in a 8x lane OSFP system and to enable the OSFP 400G interconnect ecosystem. This will greatly help the legacy OSFP users upgrade the link bandwidth to 400G per port with lower cost and shorter transition time.

Outline drawing

Wiring Diagram

P1				P2
GND	1		31	GND
TX2+	2	4>	32	RX2+
TX2-	3	4>	33	RX2-
GND	4		34	GND
TX4+	5	4>	35	RX4+
TX4-	6	4>	36	RX4-
GND	7		37	GND
TX6+	8	4-12	38	RX6+
TX6-	9	4-12	39	RX6-
GND	10		40	GND
TX8+	11	4-10	41	RX8+
TX8-	12	412	42	RX8-
GND	13		43	GND
SCL	14		44	INT/RSTn
VCC	15		45	VCC
VCC	16		46	VCC
LPWh/PRSn	17		47	SDA
GND	18		48	GND
RX7-	19	4	49	TX7-
RX7+	20	4-10	50	TX7+
GND	21		51	GND
RX5-	22	4-12	52	ТХ5-
RX5+	23	4-6	53	TX5+
GND	24		54	GND
RX3-	25	4-12	55	TX3-
RX3+	26	4-10	56	TX3+
GND	27		57	GND
RX1-	28	44	58	TX1-
RX1+	29	4-12	59	TX1+
GND	30		60	GND

P1				P2
GND	31		1	GND
RX2+	32	⊲⊸⊳	2	TX2+
RX2-	33	⊲⊸⊳	3	TX2-
GND	34		4	GND
RX4+	35	⊲⊳	5	TX4+
RX4-	36	4>	6	TX4-
GND	37		7	GND
RX6+	38	4-10	8	ТХ6+
RX6-	39	4-0	9	ТХ6-
GND	40		10	GND
RX8+	41	4-10	11	TX8+
RX8-	42	4-12	12	ТХ8-
GND	43		13	GND
INT/RSTn	44		14	SCL
VCC	45		15	VCC
VCC	46		16	VCC
SDA	47		17	LPWh/PRS:
GND	48		18	GND
ТХ7-	49	4	19	RX7-
ТХ7+	50	4	20	RX7+
GND	51		21	GND
ТХ5-	52	0-0	22	RX5-
ТХ5+	53	\$	23	RX5+
GND	54		24	GND
ТХЗ-	55	⊲⊸⊳	25	RX3-
ТХ3+	56	4-0	26	RX3+
GND	57		27	GND
TX1-	58	4	28	RX1-
TX1+	59	4->	29	RX1+
GND	60		30	GND

PINOUT

Bottom Side (viewed from bottom)

Electrical Performance

Signal Integrity

ľ	ТЕМ	REQUIREMENT	TEST CONDITION
Differe	Cable Impedance	100±5Ω	
ntial	Paddle Card Impedance	100±10Ω	Rise time of 25ps (20 % - 80 %).
ce)	Cable Termination Impedance	100+10/-15Ω	
[Differentia (Input/Outr loss S _{DD11} /3	l but)Return S _{DD22]}	10MHz≪f ≪26.5GHz	
[Differentia common-m (Input/Outp loss S _{CD11} /s	rential to non-mode //Output)Return S_{CD11}/S_{CD22} Return_loss(f) $\geq \begin{cases} 22-10(f/25.78) & 0.05 \leq f < 12.89 \\ 15-(6/25.78)f & 12.89 \leq f \leq 19 \end{cases}$ Where f is the frequency in GHz Return_loss(f) is the Differential to common-mode return loss at frequency f		
[Common-mode to Common-mode (Input/Output)Return loss S_{CC11}/S_{CC22}] $Return_loss(f) \ge 2dB$ $0.05 \le f \le 19$ Where f s the frequency in GHz Return_loss at frequency of			50MHz≪f ≪26.5GHz
Image: Constraint of the second systemImage: Constraint of the second system[Differential Insertion Loss (S_{DD21} Max.)]Insertion _loss(f) \geq -17.16dB0.05 \leq f \leq 13.28GHzWhere Insertion _loss (f) Differential Insertion Loss at frequency fInsertion Loss (f) Differential Insertion Loss at frequency f		50MHz≤f ≤26.5GHz	
[Insertion L	.OSS	-0.176*f - 0.7 < ILD < 0.176* f + 0.7	50MHz≪f ≪ 26 56GHz
Differential common-m Conversion Loss-Differ	to node n rential	Conversion $loss(f) - IL(f) \ge \begin{cases} 10 & 0.05 \le f < 12.89 \\ 14-0.3108f & 12.89 \le f < 26.5 \end{cases}$ Where	50MHz≪f ≪26.5GHz
Insertion		f is the frequency in GHz	

Loss(S _{CD21} -S _{DD21})	Conversion_loss(f)	is	the cable assembly differential to	
	common-mode conversion loss			
	IL(f)	is	the cable assembly insertion loss	
[MDNEXT(multiple disturber near-end crosstalk)]	≥35dB @26.5GHz			10MHz≪f ≪26.5GHz
[Intra Skew]	10ps/m,			10MHz≪f ≪19GHz

Other Electrical Performance

ITEM	REQUIREMENT	TEST CONDITON	
I ow Lovel Centact		EIA-364-23:Apply a maximum voltage of	
Resistance]	70milliohms Max. From initial.	20mV	
		And a current of 100 mA.	
Insulation Resistance	10Mohm(Min.)	EIA364-21:AC 300V 1minute	
[Dielectric Withstanding Voltage]		EIA-364-20:Apply a voltage of 300 VDC	
	NO disruptive discharge.	for 1minute between adjacent terminals	
		And between adjacent terminals and	
		ground.	

Environment Performance

ITEM	REQUIREMENT	TEST CONDITON
[Operating Temp. Range]	0°C to +70°C	Cable operating temperature range.
[Storage Temp. Range (in packed condition)]	-40°C to +80°C	Cable storage temperature range in packed condition.
[Thermal Cycling Non-Powered]	No evidence of physical damage	EIA-364-32D, Method A, -25 to 90C, 100 cycles, 15 min. dwells
[Salt Spraying]	48 hours salt spraying after shell corrosive area less than 5%.	EIA-364-26
Mixed Flowing Gas	Pass electrical tests per 3.1 after stressing. (For connector only)	EIA-364-35 Class II,14 days.
Temp. Life	No evidence of physical damage	EIA-364-17C w/ RH, Damp heat 90°C at 85% RH for 500 hours then return to ambient
Cable Cold Bend	4H,No evidence of physical damage	Condition: -20°C±2°C, mandrel diameter is 6 times the cable diameter.

Mechanical and Physical Characteristics

ITEM	REQUIREMENT	TEST CONDITON
		Clamp & vibrate per EIA-364-28E,
Vibration	Pass electrical tests	TC-VII, test condition letter – D, 15 minutes in X, Y
	per 3.1 alter stressing.	& Z axis.
		Flex cable 180° for 20 cycles (±90° from nominal
		position) at 12 cycles per minute with a 1.0kg load
Cable Flex		applied to the cable jacket. Flex in the boot area
	damage	90º in each direction from vertical. Per
		EIA-364-41C
Oshla Dhun Datantian in	125 N Min.	No functional damage to module, connector, or
Cable Plug Retention in	No evidence of physical	cage with latching mechanism activated.
Cage	damage	Per OSFP _Specification_Rev5_0 5.0
		Cable plug is fixtured with the bulk cable hanging
		vertically. A 90N axial load is applied (gradually) to
Cable Retention in Plug	No evidence of physical	the cable jacket and held for 1 minute. Per
	damage	EIA-364-38B
Mashaniaal Ohaali	Pass electrical tests	Clamp and shock per EIA-364-27B, TC-G,3 times
Mechanical Shock	Per 3.1 after stressing.	in 6 directions, 100g, 6ms.
		Per OSFP _Specification_Rev5_0 5.0
Cable Divertian		Module to be inserted into connector and cage with
Cable Plug Insertion	401 Max.(551)	latch mechanism engaged.
		(55N if the cage has riding heatsink)
		Per OSFP _Specification_Rev5_0 5.0
Cable plug Extraction	20NLMay (4ENI)	Module to be removed from connector and cage
	30N Max. (45N)	with latching mechanism disengaged.
		(45N if the cage has riding heatsink)
		Per OSFP _Specification_Rev5_0 5.0,
	Module:50 cycles,	Number of cycles for an individual module, to be
Durability	Connector/Cage Cycles : 100 cycles	tested with cage, connector, and module; latches
	No evidence of physical damage	may be locked out during testing

Ordering Information

PN	Data Rate	Length	Wire Gauge	Temp.Range	Note
EODP40X-330CN0	400G	0.5M	30AWG	0-70°C	
EODP40X-330CN1	400G	1M	30AWG	0-70°C	
EODP40X-328CN1.5	400G	1.5M	28AWG	0-70°C	
EODP40X-328CN2	400G	2M	28AWG	0-70°C	
EODP40X-327CN3	400G	3M	27AWG	0-70°C	

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strictstandards,strict quality inspection, to guarantee the high quality,standard of each product.

Package diagram

Both ends of the connector use protective sleeve protection, each into a separate anti - static

bag.

<=2m : 300*350mm

Company: ETU-Link Technology Co., LTD Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District, Shenzhen city, GuangDongProvince,China 518109 Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.