



QSFP28

#### EQ2DP10X-32Q2CNxx

#### 100G QSFP28 to 2x 50G QSFP28 Copper Breakout Cable

- Compliant with IEEE 802.3bj
- Compliant with SFF-8665
- Up to 100Gb/s data rates
- > Ultra low crosstalk for improved performance
- Low insertion loss
- BER better than 10-15
- > Serial numbers printed on each end
- Tested in an end-to-end system
- RoHS compliant

FC ( E 🕱 🕑

## Applications

- Low EMI radiation Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- > Telecommunication and wireless infrastructure
- Medical diagnostics and networking

#### **Description**

ETU-LINK's EQ2DP10X-32Q2CNxx provides robust connections for leading edge100Gb/s systems. Passive copper cables require no additional power to ensure quality connectivity. The100Gb/s passive copper cables are fully compliant with SFF-8436 specification and provide connectivity between devices using QSFP28 ports. ETU-LINK's CAB-ZQP/2ZQP-PXM fills the need for short, cost-effective connectivity in the data center.

ETU-LINK's high-quality solutions provide a power-efficient replacement for active power connectivity such as fiber optic cables for short distances. Optimizing systems to operate with ETU-LINK's CAB-ZQP/2ZQP-PXM significantly reduces power consumption and EMI emission.

The Low Smoke Zero Halogen (LSZH) design fully complies with the European Union Restriction of Hazardous Substances (RoHS) directive and similar North American safety and environmental standards.

## **Recommended Operation Condition**

| Parameter                            | Symbol  | Min   | Мах          | Unit |
|--------------------------------------|---------|-------|--------------|------|
| Operating Case Temperature           | Торс    | 0     | 70           | degC |
| Storage Temperature                  | Tst     | -40   | 125          | degC |
| Relative Humidity (non-condensation) | RS      | -     | 85           | %    |
| Supply Voltage                       | VCC3    | 3.135 | 3.465        | V    |
| Voltage on LVTTL Input               | Vilvttl | -0.3  | VCC3<br>+0.2 | V    |
| Power Supply Current                 | ICC3    | 0.001 | -            | mA   |
| Total Power Consumption              | Pd      | -     | 0.003        | W    |

Notes:

Stress or conditions exceed the above range may cause permanent damage to the device.

This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not applied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Frequency Domain

### **Frequency Domain**

| Item | Test Parameter                      | IEEE802.3bj Specification                                                                  |
|------|-------------------------------------|--------------------------------------------------------------------------------------------|
| 1    | Differential Insertion Loss (SDD12) | Maximum insertion loss at 12.8906Ghz -22.48dB<br>Minimum insertion loss at 12.8906Ghz -8dB |
| 2    | Differential Insertion Loss (SDD21) | Maximum insertion loss at 12.8906Ghz -22.48dB<br>Minimum insertion loss at 12.8906Ghz -8dB |
| 3    | Differential Return Loss (SDD22)    | -16.5+2xSQRT(f) @ 0.01 to 4.1GHz<br>-10.66+14xLog10(f/5.5) @4.1 to 19GHz                   |
| 4    | Differential Return Loss (SDD11)    | -16.5+2xSQRT(f) @ 0.01 to 4.1GHz<br>-10.66+14xLog10(f/5.5) @4.1 to 19GHz                   |
| 5    | Common Mode Reflection (SCC22)      | -2dB @ 0.01 to 19GHz                                                                       |
| 6    | Common Mode Reflection (SCC11)      | -2dB @ 0.01 to 19GHz                                                                       |
| 7    | Common Mode Conversion (SCD22)      | -22+(20/25.78)*(f) @ 0.01 to 12.89GHz<br>-15+(6/25.78)*(f) @ 12.9 to 19GHz                 |
| 8    | Common Mode Conversion (SCD11)      | -22+(20/25.78)*(f) @ 0.01 to 12.89GHz<br>-15+(6/25.78)*(f) @ 12.9 to 19GHz                 |

Time Domain

| Item | Test Parameter                          | Specification (Proposal )                                                                                                                                                                |  |  |  |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1    | Intra-Skew*<br>1M<br>1.5M~2M<br>2.5M~3M | 20ps Max<br>25ps Max<br>30ps Max                                                                                                                                                         |  |  |  |
| 2    | Impedance                               | 100 +/- 10 Ohm                                                                                                                                                                           |  |  |  |
|      | Rise time: 14ps (20%~80%)               |                                                                                                                                                                                          |  |  |  |
| 3    | Insertion Loss*<br>(SDD21)for 1M        | <ul> <li>a) 0.6GHz : -2.09 dB Max</li> <li>b) 1.25GHz : -2.88 dB Max</li> <li>c) 2.50GHz : -3.69 dB Max</li> <li>d) 3.25GHz : -4.72 dB Max</li> <li>e) 5.0GHz : -5.82 dB Max</li> </ul>  |  |  |  |
| 3    | Insertion Loss*<br>(SDD21) for 1.5M     | <ul> <li>a) 0.6GHz : -2.10 dB Max</li> <li>b) 1.25GHz : -3.24 dB Max</li> <li>c) 2.50GHz : -5.65 dB Max</li> <li>d) 3.25GHz : -5.99 dB Max</li> <li>e) 5.0GHz : -6.90 dB Max</li> </ul>  |  |  |  |
| 3    | Insertion Loss*<br>(SDD21) for 2M       | <ul> <li>a) 0.6GHz : -2.28 dB Max</li> <li>b) 1.25GHz : -3.76 dB Max</li> <li>c) 2.50GHz : -5.08 dB Max</li> <li>d) 3.25GHz : -6.74dB Max</li> <li>e) 5.0GHz : -8.14 dB Max</li> </ul>   |  |  |  |
| 3    | Insertion Loss*<br>(SDD21) for 2.5M     | <ul> <li>a) 0.6GHz : -2.53 dB Max</li> <li>b) 1.25GHz : -4.35 dB Max</li> <li>c) 2.50GHz : -5.93 dB Max</li> <li>d) 3.25GHz : -7.90dB Max</li> <li>e) 5.0GHz : -9.45 dB Max</li> </ul>   |  |  |  |
| 3    | Insertion Loss*<br>(SDD21) for 3M       | <ul> <li>a) 0.6GHz : -2.77 dB Max</li> <li>b) 1.25GHz : -4.79 dB Max</li> <li>c) 2.50GHz : -6.94 dB Max</li> <li>d) 3.25GHz : -8.73 dB Max</li> <li>e) 5.0GHz : -10.58 dB Max</li> </ul> |  |  |  |

# **Pin Descriptions**



| Pin | Logic      | Symbol  | Name/Description                     | Note |
|-----|------------|---------|--------------------------------------|------|
| 1   |            | GND     | Ground                               | 1    |
| 2   | CML-I      | Tx2n    | Transmitter Inverted Data Input      |      |
| 3   | CML-I      | Tx2p    | Transmitter Non-Inverted Data output |      |
| 4   |            | GND     | Ground                               | 1    |
| 5   | CML-I      | Tx4n    | Transmitter Inverted Data Input      |      |
| 6   | CML-I      | Tx4p    | Transmitter Non-Inverted Data output |      |
| 7   |            | GND     | Ground                               | 1    |
| 8   | LVTLL-I    | ModSelL | Module Select                        |      |
| 9   | LVTLL-I    | ResetL  | Module Reset                         |      |
| 10  |            | VccRx   | +3.3V Power Supply Receiver          | 2    |
| 11  | LVCMOS-I/O | SCL     | 2-Wire Serial Interface Clock        |      |
| 12  | LVCMOS-I/O | SDA     | 2-Wire Serial Interface Data         |      |
| 13  |            | GND     | Ground                               |      |
| 14  | CML-O      | Rx3p    | Receiver Non-Inverted Data Output    |      |
| 15  | CML-O      | Rx3n    | Receiver Inverted Data Output        |      |
| 16  |            | GND     | Ground                               | 1    |
| 17  | CML-O      | Rx1p    | Receiver Non-Inverted Data Output    |      |
| 18  | CML-O      | Rx1n    | Receiver Inverted Data Output        |      |
| 19  |            | GND     | Ground                               | 1    |
| 20  |            | GND     | Ground                               | 1    |
| 21  | CML-O      | Rx2n    | Receiver Inverted Data Output        |      |
| 22  | CML-O      | Rx2p    | Receiver Non-Inverted Data Output    |      |
| 23  |            | GND     | Ground                               | 1    |
| 24  | CML-O      | Rx4n    | Receiver Inverted Data Output        | 1    |
| 25  | CML-O      | Rx4p    | Receiver Non-Inverted Data Output    |      |
| 26  |            | GND     | Ground                               | 1    |

|    |         |         |                                     | 1 |
|----|---------|---------|-------------------------------------|---|
| 27 | LVTTL-O | ModPrsL | Module Present                      |   |
| 28 | LVTTL-O | IntL    | Interrupt                           |   |
| 29 |         | VccTx   | +3.3 V Power Supply transmitter     | 2 |
| 30 |         | Vcc1    | +3.3 V Power Supply                 | 2 |
| 31 | LVTTL-I | LPMode  | Low Power Mode                      |   |
| 32 |         | GND     | Ground                              | 1 |
| 33 | CML-I   | Тх3р    | Transmitter Non-Inverted Data Input |   |
| 34 | CML-I   | Tx3n    | Transmitter Inverted Data Output    |   |
| 35 |         | GND     | Ground                              | 1 |
| 36 | CML-I   | Tx1p    | Transmitter Non-Inverted Data Input |   |
| 37 | CML-I   | Tx1n    | Transmitter Inverted Data Output    |   |
| 38 |         | GND     | Ground                              | 1 |

Notes:

1. GND is the symbol for signal and supply (power) common for QSFP modules. All are common within the QSFP module and all module voltages are referenced to this potential otherwise noted. Connect these directly to the host board signal common ground plane

2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a Maximum current of 500mA.

# **Mechanical Dimensions**



### **Order Information**

#### 100G QSFP28 to 2x 50G QSFP28 Copper Breakout Cable Assemblies, Passive

| Length | Data Rate | P/N                |   | AWG   | Length Tolerance |
|--------|-----------|--------------------|---|-------|------------------|
| 1m     | 100G      | CAB-ZQP/2ZQP-P1M   | / | 28 30 | +0.1/-0.0m       |
| 1.5M   | 100G      | CAB-ZQP/2ZQP-P1.5M | / | 28 30 | +0.1/-0.0m       |
| 2M     | 100G      | CAB-ZQP/2ZQP-P2M   | / | 28 30 | +0.1/-0.0m       |
| 2.5M   | 100G      | CAB-ZQP/2ZQP-P2.5M | / | 28 30 | +0.1/-0.0m       |
| ЗM     | 100G      | CAB-ZQP/2ZQP-P3M   | / | 28 /  | +0.3/-0.3m       |

# **Compatibility Test**

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.



## **Product Production Process**

# **Quality Assurance**

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.



7

# Packaging

#### Individual package.



Company: ETU-Link Technology Co., LTD Address: 4th Floor, C Building, JinBoLong Industrial Park, QingQuan Road, LongHua District, Shenzhen city, GuangDong Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com All Rights Reserved