

Rev	Date	Modified by	Description
A	2023		

Product Specifications

200Gbps QSFP56 To 2x 100G DSFP56 Passive High Speed Cable

PN: EQ5DP20X-32D5CNxx

Features

- SFF-8636, SFF-8402, DSFP MSA
- Compliant with ethernet network IEEE802.3bj&IEEE802.3 cd
- Supports I2C two-wire interface for easy control
- Supports hot swap
- Low crosstalk
- Low power consumption

Applications

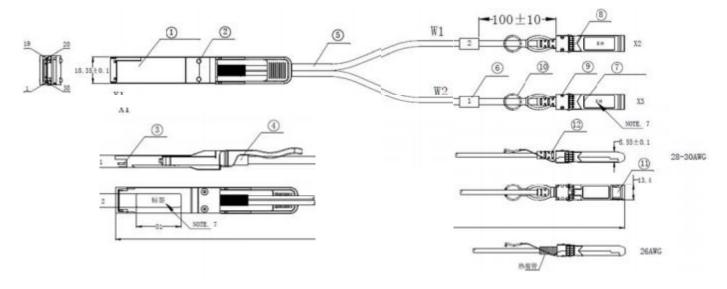
- > 10G/40G /100g/200 Ethernet
- Infin iband SDR, DDR, QDR, FDR, EDR, HDR
- Switch router Data center, cloud server

Product Description

200G QSFP56 passive cable assembly products, based on 4X50G or 4X56G structure, the production

Products can well meet the next generation of 200G switches, servers, routers and other product applications.

The QSFP56 cable assembly features an optimized design to reduce crosstalk and plug loss for excellent signal integrity,


Fully compliant with the next generation 200G Ethernet and InfiniBand HDR standards.

The DSFP56 is based on SFP+ equivalent form factor, supports NRZ/PAM4 transmission, provides 56Gb/s error-free code transmission, and can be applied to high-density 56G Ethernet

switches and network interfaces to facilitate data centers

200G QSFP56 To 2x100G DSFP56 supports the interconnection of two interface devices and single channel transmission speed rate is 56Gbps.

Outline drawing

Wiring Diagram

wire	Starting signal	Starting	End	End signal	wire	Starting signal	Starting	End	End signal
	RX1+	X1.17	X2.18	TX+		RX3+	X1.14	X3. 18	TX+
	RX1-	X1.18	X2, 19	TX-		RX3-	X1. 15	X3. 19	TX-
	GND	X1.19	X2.20	GND	W2	GND	X1.16	X3. 20	GND
	TX1+	X1.36	X2.13	RX+		ТХ3+	X1. 33	X3.13	RX+
2443	TX1-	X1. 37	X2. 12	RX-		TX3-	X1.34	X3.12	RX-
	GND	X1.38	X2.14	GND		GND	X1.35	X4. 14	GND
W1	RX2+	X1.22	X2.2	TX2+		RX4+	X1.25	X3. 2	TX2+
	RX2-	X1.21	X2.1	TX2-		RX4-	X1.24	X3. 1	TX2-
	GND	X1.20	X2.22	GND		GND	X1.23	X3. 22	GND
	TX2+	X1. 3	X2.8	RX2+		TX4+	X1.6	X3.8	RX2+
	TX2-	X1.2	X2.9	RX2-		TX4-	X1.5	X3. 9	RX2-
	GND	X1. 1	X2.10	GND		GND	X1.4	X4.10	GND

Electrical Performance

Signal Integrity

ITEM		REQUIREMENT	TEST CONDITION
	Cable Impedance	100±5Ω	Rise time of
Differential Impedance	Paddle Card Impedance	100±10Ω	25ps (20 % - 80 %).
·	Cable Termination Impedance	100±15Ω	
Differential (Input/Outp loss S _{DD11} /s	out)Return	Return_loss(f) $16.5-2\sqrt{f}$ $0.05 \le f < 4.1$ $10.66-14\log_{10}(f/5.5)$ $4.1 \le f \le 26.5$ frequency in GHzWherefis theReturn loss(f)is the return loss at frequency f	10MHz≪f ≪26.5GHz
Differential to common-mode (Input/Output)Return loss S_{CD11}/S_{CD22} Return_loss(f) > 15-(6/25.78)f toological for the frequency in GHz is the Differential to common to com		Return_loss(f) $15-(6/25.78)f$ $12.89 \le f \le 26.5$ Where f is the frequency in GHz	10MHz≤f ≪26.5GHz
Common-mode to Common-mode (Input/Output)Return loss S_{CC11}/S_{CC22} Return_loss(f) \geq 2dB Where f $0.2 \leq f \leq 126.5$ Where is the frequency in GHz Return_loss(f) is the common-mode to common-mode retu loss at frequency f		10MHz≪f ≪26.5GHz	
Differential Insertion (Differential InsertionLoss Max. For TPa to TPb Excluding Loss (S _{DD21} Max.) Test fixture) Passive Cable: -17.16dB Min@13.28GHz.		10MHz≪f ≪13.28GHz	
Differential common-m Conversior	node	10 0.01≤f< 12.89	

Loss-Differential	Where	10MHz≪f
Insertion		≪26.5GHz
Loss(S _{CD21} -S _{DD21})		
	f is the frequency in GHz	
	Conversion_loss(f) is the cable assembly	
	differential to common-mode conversion loss	
	IL(f) is the cable assembly insertion loss	
MDNEXT(multiple		40141
disturber near-end crosstalk)	≥26dB @13.28GHz	10MHz≪f ≪26.5GHz

Other Electrical Performance

ITEM	REQUIREMENT	TEST CONDITON
Low Level Contact Resistance	20milliohms Max. From initial.	EIA-364-23:Apply a maximum voltage of 20mV And a current of 100 mA.
Insulation Resistance	10Mohm(Min.)	EIA364-21:AC 300V 1minute
Dielectric Withstanding Voltage	NO disruptive dischharge.	EIA-364-20:Apply a voltage of 300 VDC for 1minute between adjacent terminals And between adjacent terminals and ground.

Environment Performance

ІТЕМ	REQUIREMENT	TEST CONDITON
[Operating Temp. Range]	0°C to +70°C	Cable operating temperature range.
[Storage Temp.		Cable storage temperature range
Range	-40°C to +80°C	in packed condition.
(in packed condition)]		
[Thermal Cycling	No evidence of physical damage	EIA-364-32D, Method A, -25 to 90C, 100
Non-Powered]		cycles, 15 min. dwells
[Salt Spraying]	48 hours salt spraying after shell	
	corrosive area less than 5%.	EIA-364-26

Mixed Flowing Gas	Pass electrical tests per 3.1 after	EIA-364-35 Class II,14 days.
	stressing. (For connector only)	
Temp. Life	No evidence of physical damage	EIA-364-17C w/ RH, Damp heat 90°C at
		85% RH for 500 hours then return to
		ambient
Cable Cold Bend	4H,No evidence of physical	Condition: -20°C±2°C, mandrel diameter
	damage	is 6 times the cable diameter.

Mechanical and Physical Characteristic

ITEM	REQUIREMENT	TEST CONDITON
Vibration	Pass electrical tests per 3.1 after stressing.	Clamp & vibrate per EIA-364-28E,
		TC-VII, test condition letter – D, 15 minutes
		in X, Y & Z axis.
		Flex cable 180° for 20 cycles (±90° from
Cable Flex	No evidence of physical damage	nominal position) at 12 cycles per minute
		with a 1.0kg load applied to the cable
		jacket. Flex in the boot area 90° in each
		direction from vertical. Per EIA-364-41C
	90N Min. No evidence of physical damage	Force to be applied axxially with no damage
		to cage. Per DSFP MSA Rev 1.0
Cable Plug Retention in		Pull on cable jacket approximately 1 ft
Cage		behind cable plug. No functional damage to
		cable plug below 90N.
		Per SFF-8432 Rev 5.0
Cable Retention in Plug	90N Min.	Cable plug is fixtured with the bulk cable
	No evidence of physical damage	hanging vertically. A 90N axial load is
		applied (gradually) to the cable jacket and
		held for 1 minute. Per EIA-364-38B
Mechanical Shock	Pass electrical tests	Clamp and shock per EIA-364-27B, TC-G,3
	Per 3.1 after stressing.	times in 6 directions, 100g, 6ms.
Cable Plug Insertion	40N Max.(QSFP56)	Per SFF8661 Rev 2.1
	18N Max.(DSFP56)	Per DSFP MSA Rev 1.0

Cable plug Extraction	30N Max. (QSFP56) 12.5N Max. (DSFP56)	Place axial load on de-latch to de-latch plug.Per SFF8661 Rev 2.1	
		Per DSFP MSA Rev 1.0	
		EIA-364-09, perform pplug &unplug	
Durability	50 cycles,No evidence of	cycles:Plug and receptacle mate rate:	
	physical damage	250times/hour. 50times for QSFP/DSFP	
		module (CONNECTOR TO PCB)	

Company: ETU-Link Technology Co., LTD Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District, Shenzhen city, GuangDongProvince,China 518109 Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.