

QSFP56

EQ5DP20X-34S5CNxx

200G QSFP56-4SFP56 Direct Attach Cable (DAC)

- Compatible with IEEE 802.3cd, IEEE 802.3bj, IEEE 802.3by and InfiniBand HDR
- Supports aggregate data rates of 200Gbps(PAM4)
- > Optimized construction to minimize insertion loss and cross talk
- Backward compatible with existing QSFP+ connectors and cages
- > Pull-to-release slide latch design
- > 26AWG through 30AWG cable
- > Straight and break out assembly configurations available
- Customized cable braid termination limits EMI radiation
- > Customizable EEPROM mapping for cable signature
- ➢ Operating temperature: 0°C to +70°C
- Single 3.3V power supply
- RoHS compliant

Applications

- Switches, servers and routers
- Data Center networks
- Storage area networks
- High performance computing
- > Telecommunication and wireless infrastructure
- Medical diagnostics and networking
- Test and measurement equipment

Industry Standards

- 200G Ethernet(IEEE 802.3cd)
- InfiniBand HDR
- SFF-8665 QSFP+ 28G 4X Pluggable Transceiver Solution(QSFP28)
- SFF-8402 SFP+ 1X 28Gb/s Pluggable Transceiver Solution(SFP28)

Description

QSFP56 passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gbps(PAM4) per channel, and meets 200G Ethernet and InfiniBand High Data Rate(HDR) requirements. Available in a broad range of wire gauges-from 26AWG through 30AWG-this 200G copper cable assembly features low insertion loss and low cross talk.

QSFP56 uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics.

Designed for applications in the data center, networking and telecommunications markets that require a high speed, reliable cable assembly, this next generation product shares the same mating interface with QSFP+ form factor ,making it backward compatible with existing QSFP ports.QSFP56 can be used with current 10G/25G and 40G/100G applications with substantial signal integrity margin.

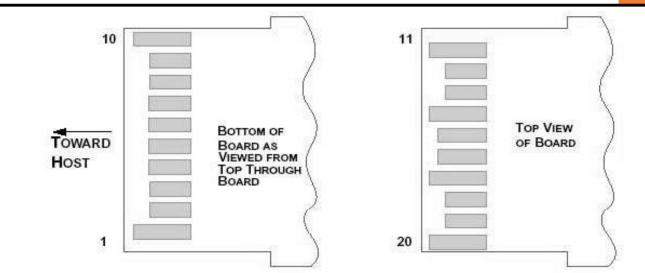
High Speed Characteristics

Parameter	Symbol	Min	Typical	Max	Unit	Note
Differential Impedance	TDR	90	100	110	Ώ	
Insertion loss	SDD21	-17.16			dB	At 13.28 GHz
Differential Return Loss	SDD11			See 1	dB	At 0.05 to 4.1 GHz
Differential Neturn 2035	SDD22			See 2	dB	At 4.1 to 19 GHz
Common-mode to common-mode output return loss	SCC11 SCC22			-2	dB	At 0.2 to 19 GHz
Differential to common-mode return loss	SCD11 SCD22			See 3	dB	At 0.01 to 12.89 GHz
Tetumioss	30022			See 4		At 12.89 to 19 GHz
Differential to common Mode	SCD21-IL			-10	dB	At 0.01 to 12.89 GHz
Conversion Loss				See 5	UD	At 12.89 to 15.7 GHz

				-6.3	At 15.7 to 19 GHz
Notes:				-0.0	At 10.7 to 19 OHZ
1. Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 × SQRT(f), with f in GHz					
2. Reflection Coefficient given by equation SDD11(dB) < -10.66 + 14 × log10(f/5.5), with f in GHz					
3. Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz					
4. Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz					
5. Reflection Coefficient given by equation SCD21(dB) < -27 + (29/22)*f, with f in GHz					

2

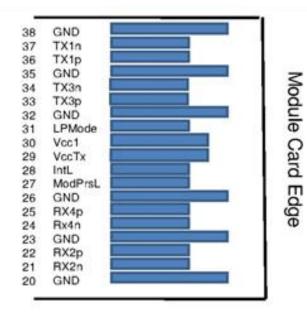
Pin Descriptions

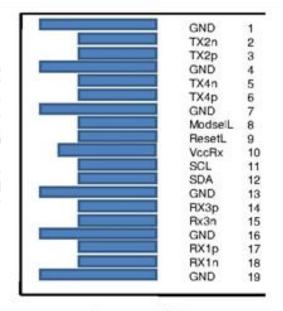

SFP56 Pin Function Definition

Pin	Logic	Symbol	Name/Description	Notes
1	_	VeeT	Transmitter Ground	
2	LV-TTL-O	TX_Fault	N/A	
3	LV-TTL-I	TX_DIS	Transmitter Disable	
4	LV-TTL-I/O	SDA	Tow Wire Serial Data	
5	LV-TTL-I	SCL	Tow Wire Serial Clock	
6		MOD_DEF0	Module present, connect to VeeT	
7	LV-TTL-I	RS0	N/A	1
8	LV-TTL-O	LOS	LOS of Signal	2
9	LV-TTL-I	RS1	N/A	
10		VeeR	Reciever Ground	
11		VeeR	Reciever Ground	
12	CML-O	RD-	Reciever Data Inverted	
13	CML-O	RD+	Reciever Data Non-Inverted	
14		VeeR	Reciever Ground	
15		VccR	Reciever Supply 3.3V	
16		VccT	Transmitter Supply 3.3V	
17		VeeT	Transmitter Ground	
18	CML-I	TD+	Transmitter Data Non-Inverted	
19	CML_I	TD-	Transmitter Data Inverted	
20		VeeT	Transmitter Ground	

1. Signals not supported in SFP+ Copper pulled-downto VeeT with 30K ohms resistor

2. Passive cable assemblies do not support LOS and TX_DIS

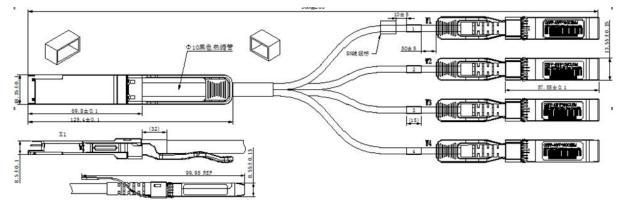

4


QSFP56 Pin Function Definition

Pin	Logic	Symbol	Description
1		GND	Ground
2	CML-I	Tx2n	Transmitter Inverted Data Input
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input
4		GND	Ground
5	CML-I	Tx4n	Transmitter Inverted Data Input
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input
7		GND	Ground
8	LVTTL-I	ModSelL	Module Select
9	LVTTL-I	ResetL	Module Reset
10		Vcc Rx	+3.3V Power Supply Receiver
11	LVCMOS- I/O	SCL	2-wire serial interface clock
12	LVCMOS- I/O	SDA	2-wire serial interface data
13		GND	Ground
14	CML-O	Rx3p	Receiver Non-Inverted Data Output
15	CML-O	Rx3n	Receiver Inverted Data Output
16		GND	Ground
17	CML-O	Rx1p	Receiver Non-Inverted Data Output
18	CML-O	Rx1n	Receiver Inverted Data Output
19		GND	Ground
20		GND	Ground
21	CML-O	Rx2n	Receiver Inverted Data Output
22	CML-O	Rx2p	Receiver Non-Inverted Data Output
23		GND	Ground
24	CML-O	Rx4n	Receiver Inverted Data Output
25	CML-O	Rx4p	Receiver Non-Inverted Data Output
26		GND	Ground

27	LVTTL-O	ModPrsL	Module Present
28	LVTTL-O	IntL	Interrupt
29		Vcc Tx	+3.3V Power supply transmitter
30		Vcc1	+3.3V Power supply
31	LVTTL-I	LPMode	Low Power Mode
32		GND	Ground
33	CML-I	Tx3p	Transmitter Non-Inverted Data Input
34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Ground

Top Side Viewed From Top



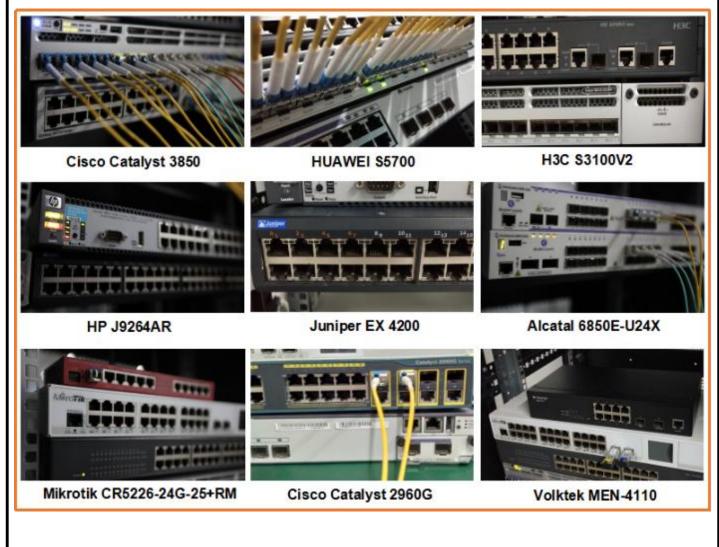
Bottom Side Viewed From Bottom

5

Mechanical Specifications

The connector is compatible with the SFF-8432 and SFF-8436 specification.

Length (m)	Cable AWG
1	30
2	26/28
3	26


Regulatory Compliance

Feature	Test Method	Performance	
Electrostatic Discharge			
(ESD) to the Electrical Pins	MIL-STD-883C Method 3015.7	Class 1(>2000 Volts)	
Electromagnetic	FCC Class B	Compliant with	
Interference(EMI)	CENELEC EN55022 Class B	Standards	
	CISPR22 ITE Class B		
RF Immunity(RFI)	IEC61000-4-3	TypicallyShownoMeasurableEffectfroma10V/mFieldSweptfrom80to1000MHzFieldSweptfrom	
RoHS Compliance	RoHS Directive 2011/65/EU and it'sAmendment Directives (EU)2015/863	RoHS (EU) 2015/863 compliant	
REACH Compliance	REACH Regulation (EC) No 1907/2006	REACH (EC) No 1907/2006 compliant	

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Product Final Test

Product Initial Test

Switch Testing

8

Packaging

Individual package.

Company: ETU-Link Technology Co., LTD Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District, Shenzhen city, GuangDongProvince,China 518109 Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.

Fiber Optic TransceiversCopyright 2011—2017 etulinktechnnology.com All Rights Reserved