

Rev	Date	Modified by	Description
A0	2023		

Product Specifications

MSA and TAA Compliant 400GBase-AOC QSFP-DD to 4xQSFP56

PAM-4 Active Optical Cable (850nm, MMF) CMIS 3.0

PN: EQDA40X-34Q5CDxx

Features

- Low latency DSP-free electronics-based CDR
- Multi-data rate up to 56.15 Gb/s per lane
- PAM4 modulation
- Single 3.3 V power supply
- > Low power consumption: 7.6W on 400G end, 2.3W on 100G end with all CDRs enabled
- Up to 1m length
- QSFP-DD MSA compliant
- CMIS 3.0/4.0 compliant
- Commercial operating case temperature range: 0 to 70°C
- Hot pluggable
- RoHS/REACH compliant
- TUV-certified
- LSZH-rated cable

Applications

- IEEE 802.3cm 400GBASE SR8
- > Datacenter: servers, switches, storages and NIC adapters
- Proprietary HPC interconnections

Description

This is an MSA and TAA compliant 400GBase-AOC QSFP-DD to 4xQSFP56 active optical cable that operates over multi-mode fiber with a maximum reach of 1.0m (3.3ft). At a wavelength of 850nm, it has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. This active optical cable is

TAA (Trade Agreements Act) compliant, and is built to comply with MSA (Multi-Source Agreement) standards. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Active optical cables are RoHS compliant and lead-free.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Supply Voltage	VIN	0		4.0	V	
Input Swing	VIN-MAX			1500	mVpp	
Storage Temperature	TSTG	-40		85	°C	Ambient
Operating Case Temperature	Тор	0		70	°C	
Relative Humidity	RH	5		85	%	

Electrical Specifications

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Data Rate (Pe	r Channel)	BR		26.5625		GBd	
Power Supply	Voltage	VCC	3.15	3.30	3.47	V	
Power	400G End	ICC		2300	2500	mA	1
Supply Current	100G End	ICC		680	750	mA	1
Power	400G End	Р		7.6	8.0	W	1
Consumpti on	100G End	Ρ		2.3	2.5	W	1
Input Differen	tial Impedance	RIN		100		Ω	
Diff. Pk-Pk Input Vol. Tolerance		VINP-P	900			mV	
Output Differe	ential Impedance	ROUT		100		Ω	
Differential Data Output Swing VO		VOUTP-P	700	800	900	mV	
Bit Error Ra GBd)	atio (at 26.5625				2.4×10-4		3

Notes:

1. Per end, all channel CDRs are enabled.

2. Pre-FEC Bit Error Ratio with a PRBS 231 – 1 test pattern over a normal operating temperature range.

Pin Descriptions (QSFP-DD 400G End)

PIN	Logic	Symbol	Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		VccRx	+3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3V Power Supply Transmitter	2
30		Vccl	+3.3V Power Supply	2
31	LVTTL-I	InitMode	Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	

Optical Communications Products Allance

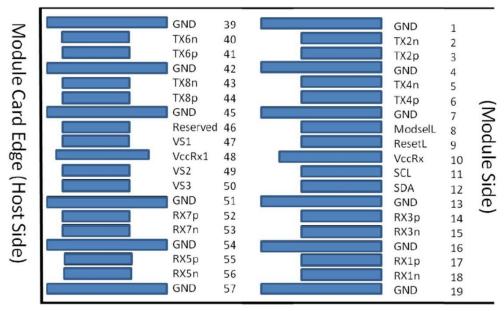
69		Reserved	For future use	3
68		Vcc2	3.3V Power Supply	2
67		VccTx1	3.3V Power Supply	2
66		Reserved	For future use	3
65		NC	No Connect	3
64		GND	Ground	1
63	CML-O	Rx8p	Receiver Non-Inverted Data Output	
62	CML-O	Rx8n	Receiver Inverted Data Output	
61		GND	Ground	1
60	CML-O	Rx6p	Receiver Non-Inverted Data Output	
59	CML-O	Rx6n	Receiver Inverted Data Output	
58		GND	Ground	1
57		GND	Ground	1
56	CML-O	Rx5n	Receiver Inverted Data Output	
55	CML-O	Rx5p	Receiver Non-Inverted Data Output	
54		GND	Ground	1
53	CML-O	Rx7n	Receiver Inverted Data Output	
52	CML-O	Rx7p	Receiver Non-Inverted Data Output	
51		GND	Ground	1
50		VS3	Module Vendor Specific 3	3
49		VS2	Module Vendor Specific 2	3
48		VccRx1	3.3V Power Supply	2
47		VSI	Module Vendor Specific 1	3
46		Reserved	For future use	3
45			Ground	1
44	CML-I	Tx8p GND	Transmitter Non-Inverted Data Input	1
42 43	CML-I	GND Tx8n	Ground Transmitter Inverted Data Input	1
		· ·		
40 41	CML-I CML-I	Tx6n Tx6p	Transmitter Inverted Data Input Transmitter Non-Inverted Data Input	
		-		·
39		GND	Ground	1
37 38		GND	Ground	1
37	CML-I	Tx1n	Transmitter Inverted Data Input	
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	I
35		GND	Ground	1

70		GND	Ground	1
71	CML-I	Тх7р	Transmitter Non-Inverted Data Input	
72	CML-I	Tx7n	Transmitter Inverted Data Input	
73		GND	Ground	1
74	CML-I	Тх5р	Transmitter Non-Inverted Data Input	
75	CML-I	Tx5n	Transmitter Inverted Data Input	
76		GND	Ground	1

Notes:

1. QSFP-DD uses common ground (GND)for all signals and supply (power). All are common within the QSFP- DD module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 shall be applied concurrently. Requirements defined for the host side of the Host Card Edge Conn\ector are listed in Table 6. VccRx, VccRx1, Vcc1, Vcc2, VccTx and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 1000 mA.


3. All Vendor Specific, Reserved and No Connect pins may be terminated with 50 ohms to ground on the host. Pad 65 (No Connect) shall be left unconnected within the module. Vendor specific and Reserved pads shall have an impedance to GND that is greater than 10 kOhms and less than 100 pF.

4. Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, 3B. (see Figure 2 for pad locations) Contact sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, followed by 3A, 3B.

Top side viewed from top 38 GND 76 GND Module Card Edge (Host Side) 37 TX1n 75 TX5n 36 TX1p 74 TX5p 35 GND 73 GND 34 TX3n 72 TX7n 33 TX3p 71 TX7p Module Side 32 GND 70 GND 31 InitMode 69 Reserved 30 Vcc1 68 Vcc2 29 VccTx 67 VccTx1 28 IntL 66 Reserved 27 ModPrsL 65 NC 26 GND 64 GND 25 RX4p 63 RX8p 24 RX4n 62 RX8n 23 GND 61 GND 22 RX2p 60 RX6p 21 RX2n 59 RX6n 20 GND 58 GND

Electrical Pin-out Details (QSFP-DD 400G End)

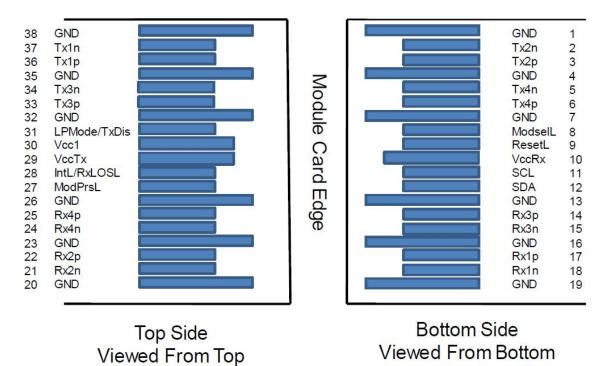
Bottom side viewed from bottom

Pin Descriptions (QSFP56 100G End)

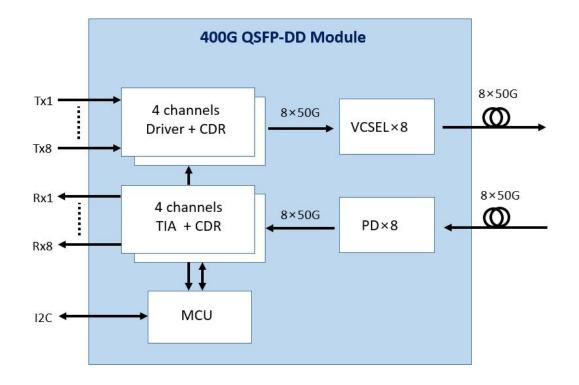
PIN	Logic	Symbol	Description	Notes
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	3
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input	3
7		GND	Ground	1
8	LVTTL-I	ModSelL	Module Select	
9	LVTTL-I	ResetL	Module Reset	
10		Vcc Rx	+3.3V Power supply receiver	2
11	LVCMOS-I/O	SCL	2-wire serial interface clock	
12	LVCMOS-I/O	SDA	2-wire serial interface data	
13		GND	Ground	1
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	3
15	CML-O	Rx3n	Receiver Inverted Data Output	3
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1

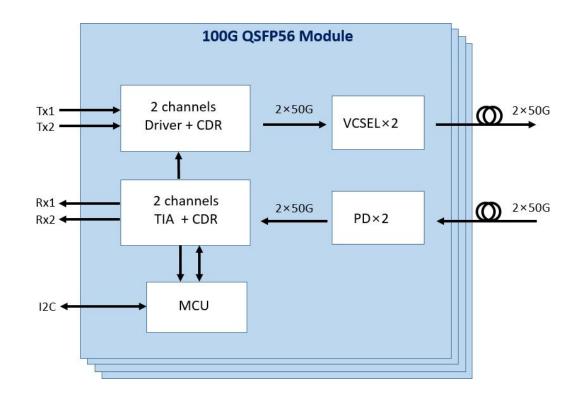
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	3
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	3
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		Vcc Тх	+3.3V Power supply transmitter	2
30		Vcc 1	+3.3V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input	3
34	CML-I	Tx3n	Transmitter Inverted Data Input	3
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Input	
38		GND	Ground	1

Notes:

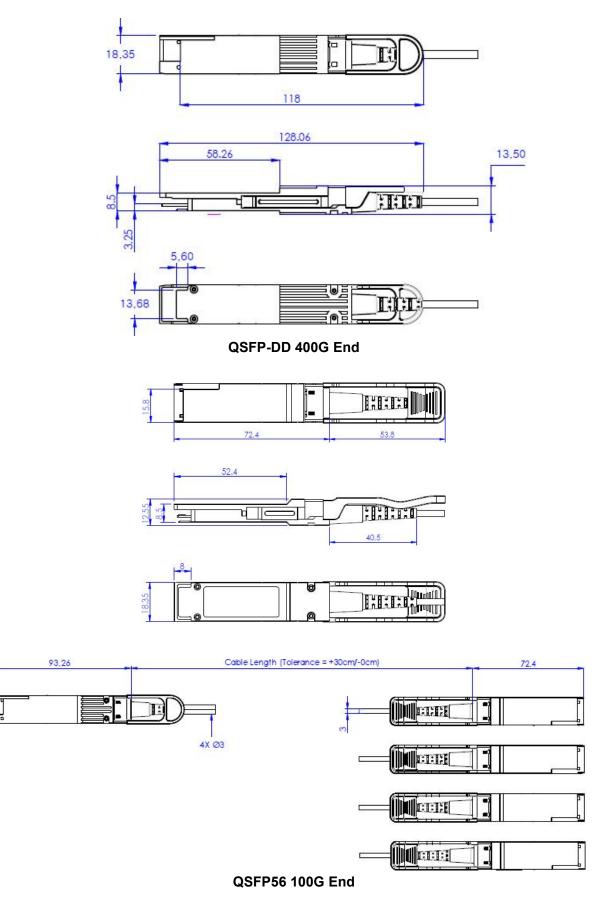

1. GND is the symbol for signal and supply (power) common for the QSFP module. All are common within the QSFP module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal-common ground plane.

2. Vcc Rx, Vcc1 and Vcc Tx are the receiver and transmitter power supplies and shall be applied concurrently. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP transceiver module in any combination. The connector pins are each rated for a maximum current of 500 mA.


3.Not used


Electrical Pin-out Details (QSFP56 100G End)

Block Diagram



Active Optical Cable Specifications

Parameter	Value	Unit	Note
Cable Diameter	LSZH: Ø3.0 ± 0.15	mm	
Minimum Bend Radius	30	mm	Without tension
Length Tolerance	+300 /0	mm	
Cable Jacket	LSZH, Aqua		

Mechanical Specifications

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance

Continuous introduction of new equipment, produced by strictstandards,strict quality inspection, to guarantee the high quality,standard of each product.

Packaging

ETU-Link provides two kinds of packaging, 10pcs/Tray and individual package.

Company: ETU-Link Technology Co., LTD Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District, Shenzhen city, GuangDongProvince,China 518109 Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.