

QSFP-DD

EQDDP40X-34Q5CNxx 400Gbps QSFP DD To 4x QSFP56 Passive High Speed Cable

- Comply with SFF-8636&QSFP-DD MSA
- ➤ Complies with Ethernet IEEE802.3bj/IEEE 802.3cd
- Support serial ID function through EEPROM
- > Support hot swap, low crosstalk, low power consumption
- > Support the maximum distance of 3 meters
- ➤ Operating temperature range: 0°C to 70°C
- RoHS compliant
- ➤ Eight-lane electrical interface transmits up to 28Gbps NRZ or 56Gbps PAM4

Applications

Telecommunications equipment

- Servers
- Routers
- Switches
- Cellular infrastructure
- Multi-platform service systems

Data networking equipment

- Servers
- Storage

Description

QSFP-DD (Double Density) has eight-channel electrical interfaces, with data transmission rates up to 28Gbps NRZ or 56Gbps PAM4, and total data rates up to 200Gbps or 400Gbps. QSFP-DD connectors and cable assemblies comply with IEEE 802.3bj, InfiniBand EDR and SAS 3.0 specifications, so they are suitable for various next-generation technologies and applications.

QSFP56 passive cable assembly products, based on 4X50G or 4X56G structure, can well meet the application requirements of next-generation 200G switches, servers, routers and other products. QSFP56 cable assemblies are optimized to reduce crosstalk and insertion loss, and have good signal integrity, fully complying with the next-generation 200G Ethernet and InfiniBand HDR standards.

Wiring Diagram

START				END
GND	X1.1		X2. 20	GND
TX2-	X1. 2	>	X2. 21	RX2-
TX2+	X1.3	>	X2. 22	RX2+
GND	X1. 4		X3. 20	GND
TX4-	X1. 5	>	X3. 21	RX2-
TX4+	X1. 6	>	X3. 22	RX2+
GND	X1. 7	75000	X3, 23	GND
MODSELL	X1. 8		X2. 27	MODPRSL
RESETL	X1. 9		X2. 28	INTL
VCCRX	X1. 10		X2, 29	VCCTX
SCL	X1. 11		X2. 30	VCC1
SDA	X1. 12		X2. 31	INITMODE
GND	X1. 13		X3. 35	GND
RX3+	X1. 14	<	X3, 36	TX1+
RX3-	X1. 15	<	X3. 37	TX1-
GND	X1. 16		X2. 35	GND
RX1+	X1. 17	(X2. 36	TX1+
RX1-	X1. 18	<	X2. 37	TX1-
GND	X1. 19		X2. 38	GND
GND	X1. 20		X2. 1	GND
RX2-	X1. 21	<	X2. 2	TX2-
RX2+	X1. 22	<	X2. 3	TX2+
GND	X1. 23		X3. 1	GND
RX4-	X1. 24	<	X3. 2	TX2-
RX4+	X1. 25	<	X3. 3	TX2+
GND	X1. 26		X3. 4	GND
MODPRSL	X1. 27		X3. 8	MODSELI
INTL	X1. 28		X3. 9	RESETL
VCCTX	X1. 29		X3. 10	VCCRX
VCC1	X1. 30		X3. 11	SCL
INITMODE	X1. 31		X3. 12	SDA
GND	X1. 32		X3, 16	GND
TX3+	X1. 33	>	X3. 17	RX1+
TX3-	X1. 34	>	X3, 18	RX1-
GND	X1. 35		X2. 16	GND
TX1+	X1. 36	>	X2. 17	RX1+
TX1-	X1, 37	>	X2. 18	RX1-
		100000V4.		0.0000000000000000000000000000000000000

START				END
GND	X1. 39		X4. 20	GND
TX6-	X1. 40	>	X4. 21	RX2-
TX6+	X1. 41	>	X4. 22	RX2+
GND	X1. 42		X5, 20	GND
TX8-	X1.43	>	X5. 21	RX2-
TX8+	X1. 44	>	X5. 22	RX2+
GND	X1.45		X5. 23	GND
RESERVED	X1.46		X4. 27	MODPRSL
VS1	X1. 47		X4. 28	INTL
VCCRX1	XI. 48		X4. 29	VCCTX
VS2	X1. 49		X4. 30	VCC1
VS3	X1.50		X4. 31	INITMODE
GND	X1.51	2222	X5. 35	GND
RX7+	X1. 52	(X5. 36	TX1+
RX7-	X1.53	<	X5. 37	TX1-
GND	X1. 54		X4. 35	GND
RX5+	X1.55	<	X4. 36	TX1+
RX5-	X1.56	<	X4. 37	TX1-
GND	X1.57		X4. 38	GND
GND	X1. 58		X4.1	GND
RX6-	X1. 59	<	X4. 2	TX2-
RX6+	X1. 60	<	X4. 3	TX2+
GND	X1. 61		X5. 1	GND
RX8-	X1. 62	<	X5. 2	TX2-
RX8+	X1. 63	(X5. 3	TX2+
GND	X1. 64		X5. 4	GND
NC	X1. 65		X5. 8	MODSELL
RESERVED	X1. 66		X5. 9	RESETL
VCCTX1	X1. 67		X5. 10	VCCRX
VCC2	X1. 68		X5. 11	SCL
RESERVED	X1. 69		X5. 12	SDA
GND	X1.70		X5, 16	GND
TX7+	X1.71	>	X5. 17	RX1+
TX7-	X1. 72	>	X5, 18	RX1-
GND	X1.73		X4. 16	GND
TX5+	X1. 74	>	X4. 17	RX1+
TX5-	X1. 75	>	X4, 18	RX1-
GND	X1.76		X4, 19	GND

Electrical Performance: Signal Integrity

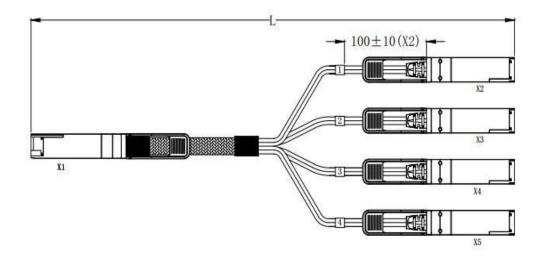
(ITE	M)			(REC	QUIREME	NT)			(TEST CONDITION)
(Differe	Cable Impedance	105+5/	-10Ω						
ntial Impedan	Paddle Card Impedance	100±10	Ω						Rise time of 25ps
ce)	Cable Termination Impedance	100±15	5Ω						(20 % - 80 %).
[Differential (Input/Outpu loss S _{DD11} /S	ıt)Return	Where f is		<i>10.66</i> uency in	i-14log ₁₀ (f/	5.5) 4.	.05≤f < 4.1 1≤f≤19 ncv f		10MHz≤f ≤19GHz
[Differential common-m (Input/Output loss ScD11/S	ode ut)Return	Return Where f Return	_loss(f)≥ _loss(f) frequence	22-(2 15-(6 is the fro	20/25.78)f 5/25.78)f equency i	0.01≦f < 12.89≦f≤: n GHz	12.89	return	10MHz≤f ≤19GHz
[Common-r Common-r (Input/Output loss S _{CC11} /S	node ut)Return	Return_loss(f)≥2dB 0.2≤f≤19 Where f is the frequency in GHz Return_loss(f) is the common-mode to common-mode return loss at frequency f					10MHz≤f ≤19GHz		
[Differential (S _{DD21} Max.	Insertion Loss)]	(Dif	ferential	•	5.0GHz	7.0GHz	10Ghz	12.89Ghz	10MHz≤f ≤19GHz

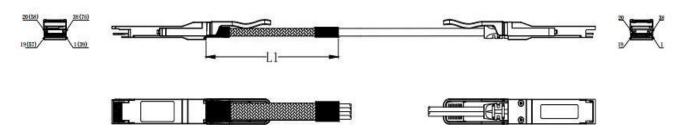
	30/28(3m)Ma x.	7.5dB	9.5dB	12.2dB	14.8dB	18.0dB	21.5dB		
	26(3m) Max.	5.7dB	7.2dB	9.9 dB	11.9dB	14.1dB	16.5dB		
	26/25(5m)Ma x.	7.8dB	10.0dB	13.5dB	16.0dB	19.0dB	22.0dB		
					10	0.0	1≤f <		
Differential to	Conve	rsion _los	ss(f) – IL(f)≥	12.89				
common-mode					27-(29/22)f	12.	.89≤f <		
Conversion	Where	;							
Loss-Differential	f		is	the	frequency	/ in	GHz	10MHz≤	f ≤19GHz
Insertion Loss(S _{CD21} -S _{DD21})		rsion_los on-mode			e assemb	oly differe	ntial to		
	IL(f)		is	the cab	le assemb	oly inserti	on loss		
[MDNEXT(multiple disturber near-end crosstalk)]	≥26dB	@12.890	GHz					10MHz≤	f ≤19GHz

Other Electrical Performance

(ITEM)	(REQUIREMENT)	(TEST CONDITON)
[Low Level Contact Resistance]	70milliohms Max. From initial.	EIA-364-23:Apply a maximum voltage of 20mV And a current of 100 mA.
Insulation Resistance	10Mohm(Min.)	EIA364-21:AC 300V 1minute
[Dielectric Withstanding Voltage]	NO disruptive discharge.	EIA-364-20:Apply a voltage of 300 VDC for 1minute between adjacent terminals And between adjacent terminals and ground.

Environment Performance


(ITEM)	(REQUIREMENT)	(TEST CONDITON)
[Operating Temp.	-20°C to +75°C	Cable operating temperature range.
Range] [Storage Temp.	-40°C to +80°C	Cable storage temperature range
Range	10 0 10 00 0	in packed condition.
(in packed condition)]		
[Thermal Cycling	No evidence of physical damage	EIA-364-32D, Method A, -25 to 90C, 100
Non-Powered]	1 7	cycles, 15 min. dwells
[Salt Spraying]	48 hours salt spraying after shell	EIA-364-26
[corrosive area less than 5%.	
Mixed Flowing Gas	Pass electrical tests per 3.1 after	EIA-364-35 Class II,14 days.
	stressing. (For connector only)	
		EIA-364-17C w/ RH, Damp heat 90℃ at
Temp. Life	No evidence of physical damage	85% RH for 500 hours then return to ambient
Cable Cold Bend	4H,No evidence of physical	Condition: -20℃±2℃, mandrel diameter
	damage	is 6 times the cable diameter.


Mechanical and Physical Characteristics

(ITEM)	(REQUIREMENT)	(TEST CONDITON)		
Vibration	Pass electrical tests per 3.1 after stressing.	Clamp & vibrate per EIA-364-28E,		
		TC-VII, test condition letter – D, 15 minutes in X, Y & Z axis.		
		Flex cable 180° for 20 cycles (±90° from		
Cable Flex	No evidence of physical	nominal position) at 12 cycles per minute		
	damage	with a 1.0kg load applied to the cable		
	damago	jacket. Flex in the boot area 90° in each		
		direction from vertical. Per EIA-364-41C		

Cable Plug Retention in Cage	90N Min. No evidence of physical damage	Force to be applied axially with no damage to cage. Per SFF 8661 Rev 2.1 Pull on cable jacket approximately 1 for behind cable plug. No functional damage to cable plug below 90N. Per SFF-8432 Rev 5.0
Cable Retention in Plug	90N Min. No evidence of physical damage	Cable plug is fixtured with the bulk cable hanging vertically. A 90N axial load is applied (gradually) to the cable jacket and held for 1 minute. Per EIA-364-38B
Mechanical Shock	Pass electrical tests Per 3.1 after stressing.	Clamp and shock per EIA-364-27B, TC-G,3 times in 6 directions, 100g, 6ms.
Cable Plug Insertion	40N Max.(QSFP56) 90N Max.(QSFP DD)	Per SFF8661 Rev 2.1 Per QSFP-DD Hardware Rev 5.0
Cable plug Extraction	30N Max. (QSFP56) 50N Max.(QSFP DD)	Place axial load on de-latch to de-latch plug.Per SFF8661 Rev 2.1 Measure without the aid of any cage kick-out springs. Place axial load on de-latch to de-latch plug. Per SFF-8432 Rev 5.0
Durability	50 cycles,No evidence of physical damage	EIA-364-09, perform plug &unplug

Outline drawing

P/N	L(mm)	L1	AWG
EQDDP40X-34Q5CN0	500±15	100±10	30
EQDDP40X-34Q5CN1	1000±25	200±10	30
EQDDP40X-34Q5CN1.5	1500±30		30
EQDDP40X-34Q5CN2	2000±35		28
EQDDP40X-34Q5CN2.5	2500±35	200±10	27
EQDDP40X-34Q5CN3	3000±45		27

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Cisco Catalyst 3850

HUAWEI S5700

H3C \$3100V2

HP J9264AR

Juniper EX 4200

Alcatal 6850E-U24X

Cisco Catalyst 2960G

Volktek MEN-4110

Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging

Company: ETU-Link Technology Co., LTD

Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince,China

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com.

Please e-mail us at sales@etulinktechnology.com or call us for assistance.