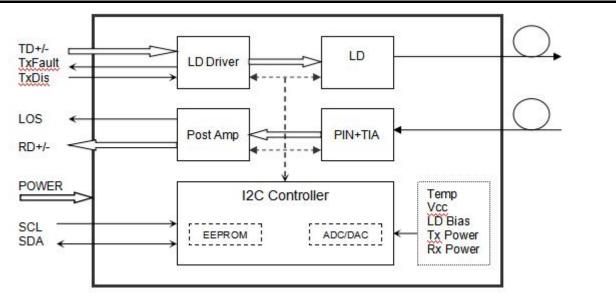


FC (E 🗷 🕑

- Single +3.3V power supply
- Real Time Digital Diagnostic Monitoring
- Operating case temperature:
 Standard: 0 to +70°C

- > 25.78 Gb/s single lane 100GE SR4
- > 25.78 Gb/s single lane 100GE eSR4 in the break out application


Description

The SFP28 transceivers are high performance, cost effective modules supporting data rate of 25.78Gbps over multimode fiber.

The transceiver consists of three sections: a VCSEL laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Мах	Unit
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	Vcc	3.135	3.30	3.465	V
Power Supply Current	lcc			300	mA
Data Rate		24.33		25.78	Gbps

Optical and Electrical Characteristics

Parameter		Symbol	Min	Typical	Мах	Unit	Notes
			Transmi	tter			
Centre Wavelength		λς	840	850	860	nm	
Spectral W	/idth(RMS)	Δλ			0.5	nm	
Side-Mode Su	uppression Ratio	SMSR	-	-	-	dB	
Average C	Output Power	Pout	-8.4		2.4	dBm	1
Extinc	tion Ratio	ER	2.0			dB	
Data Input S	wing Differential	V _{IN}	180		950	mV	2
Input Differe	ntial Impedance	Z _{IN}	90	100	110	Ω	
TY Disable	Disable		2.0		Vcc	V	
TX Disable	Enable		0		0.8	V	
	Fault		2.0		Vcc	V	
TX Fault	Normal		0		0.8	V	
			Receiv	er		<u> </u>	
Centre Wavelength		λς	840	850	860	nm	
Receive	r Sensitivity				-11.9	dBm	3,4
Receive	r Overload		2.4			dBm	3,4
LOS E	LOS De-Assert				-13	dBm	
LOS Assert		LOSA	-30			dBm	
LOS Hysteresis			0.5		4	dB	
Data Output S	Swing Differential	V _{out}	500		900	mV	5
		High	2.0		Vcc	V	
L	OS	Low			0.8	V	

Notes:

1. The optical power is launched into MMF.

2. PECL input, internally AC-coupled and terminated.

3. Measured with a PRBS 2³¹-1 test pattern @25.78Gbps, BER \leq 5E-5..

4. Bits 110.3 and bits 118.3 control the locking modes of the internal retimer or CDR, default Value is "1".

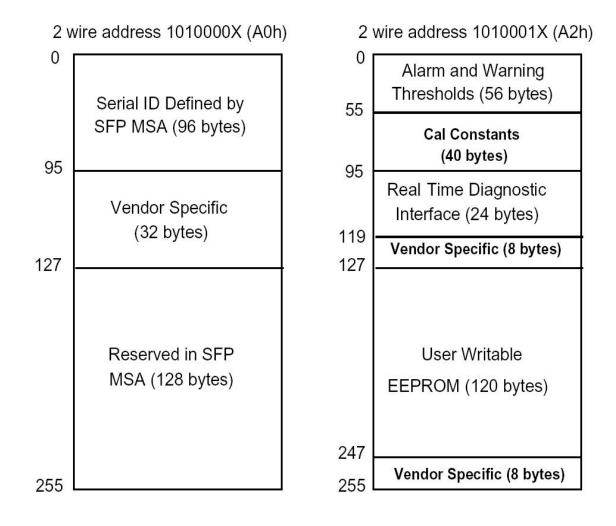
		-			
Bit 110.3 of A2h	Bit 118.3 of A2h	RX Data Rate	TX Data Rate	Status of RX CDR	Status of TX CDR
High/1	High/1	24.33G/25.78G	24.33G/25.78G	CDR select	CDR select
High/1	Low/0	24.33G/25.78G	9.95G/10.31G	CDR select	CDR bypass
Low/0	High/1	9.95G/10.31G	24.33G/25.78G	CDR bypass	CDR select
Low/0	Low/0	9.95G/10.31G	9.95G/10.31G	CDR bypass	CDR bypass

5. Internally AC-coupled.

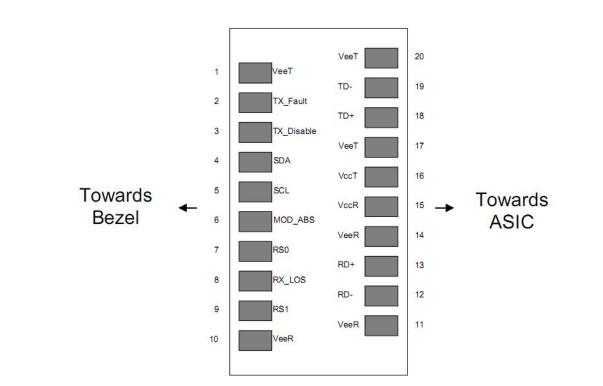
Timing and Electrical

Parameter	Symbol	Min	Typical	Мах	Unit
Tx Disable Negate Time	t_on			2	ms
Tx Disable Assert Time	t_off			100	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock		100	400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

Diagnostics


Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal
Voltage	3.0 to 3.6	V	±3%	Internal
Bias Current	0 to 15	mA	±10%	Internal
TX Power	-8.4.0 to 2.4	dBm	±3dB	Internal
RX Power	-12 to 2.4	dBm	±3dB	Internal

Digital Diagnostic Memory Map

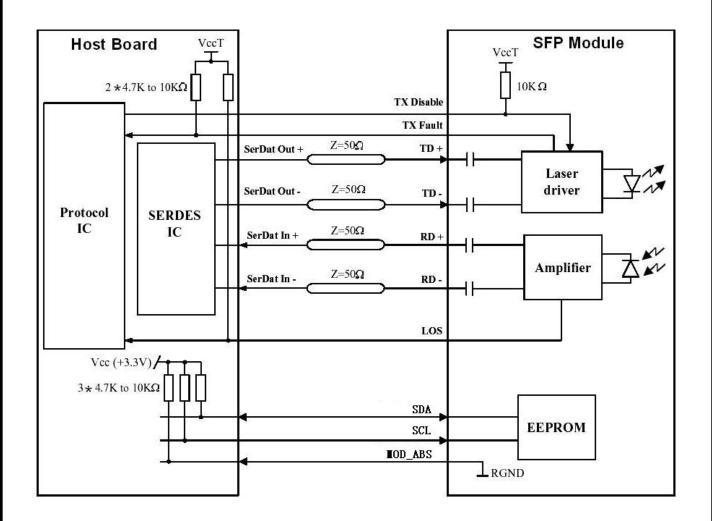

The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).

The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

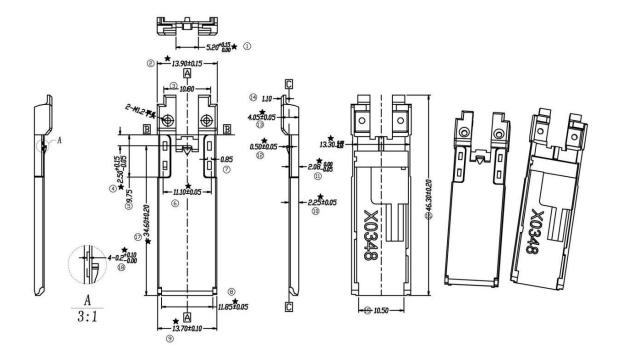
The digital diagnostic memory map specific data field defines as following.

Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	VEET	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	SDA	SDA Serial Data Signal	3	
5	SCL	SCL Serial Clock Signal	3	
6	MOD_ABS	Module Absent. Grounded within the module	3	
7	RS0	Not Connected	3	
8	LOS	Loss of Signal	3	Note 3
9	RS1	Not Connected	3	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 4
13	RD+	Received Data Out	3	Note 4
14	VEER	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{сст}	Transmitter Power Supply	2	
17	VEET	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 5
19	TD-	Inv. Transmit Data In	3	Note 5
20	VEET	Transmitter Ground	1	


Notes:

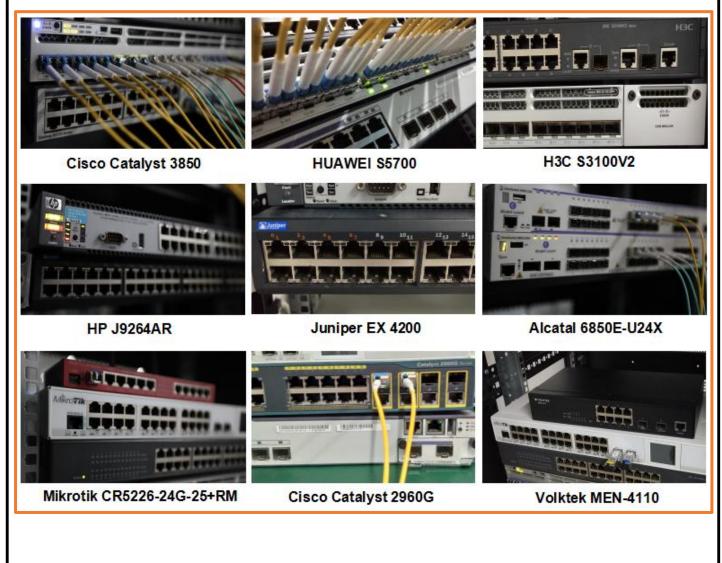
Plug Seq.: Pin engagement sequence during hot plugging.


- TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3) LOS is open collector output. Should be pulled up with 4.7k~10kΩ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.

5) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

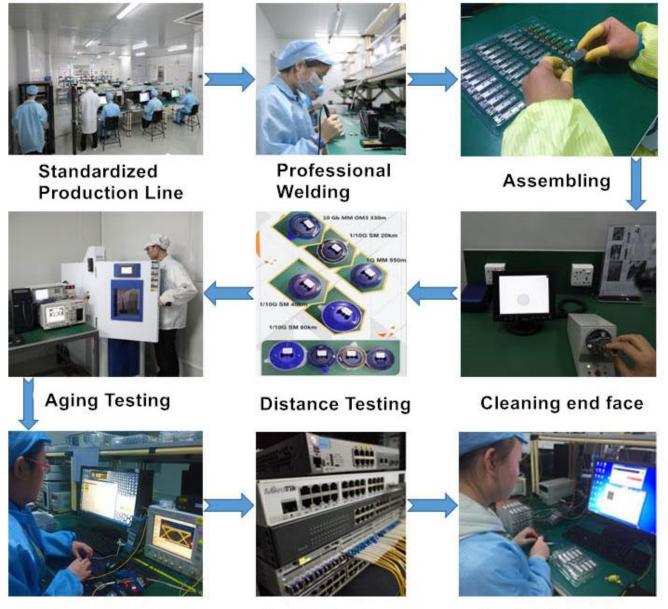
Mechanical Dimensions


Ordering information

Part Number	Product Description
ES2852X-3LCD03	850nm, 25.78Gbps, LC, OM3-MMF 200m/OM4-MMF 300m, 0°C~+70°C

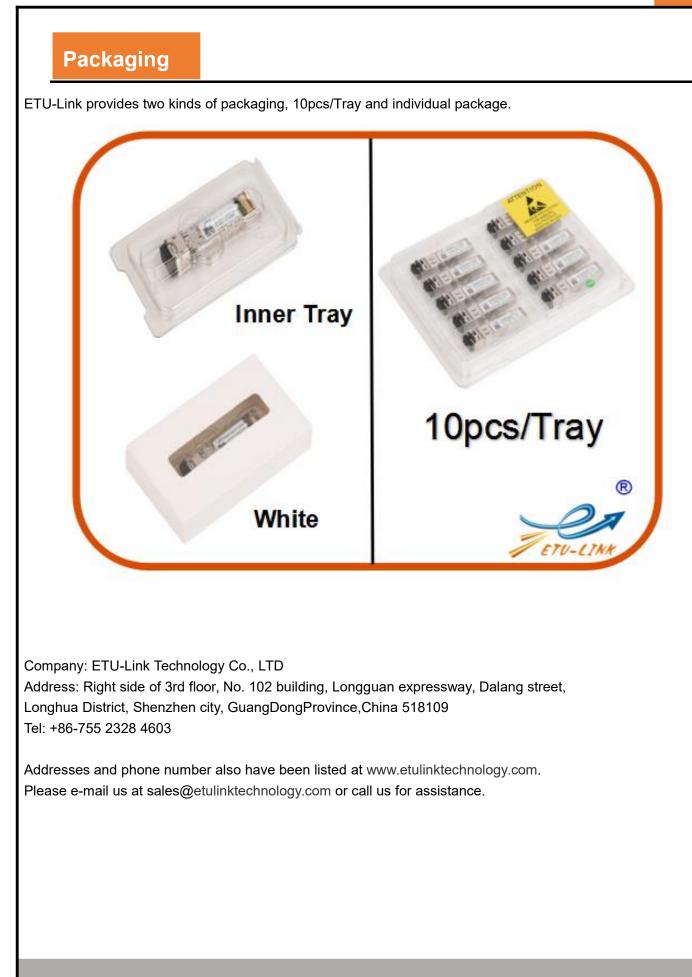
Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...


Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process

Quality Assurance


Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Product Initial Test

Switch Testing

Product Final Test

Fiber Optic Transceivers Copyright 2011-2017 etulinktechnology.com All Rights Reserved