

Optical Communication System

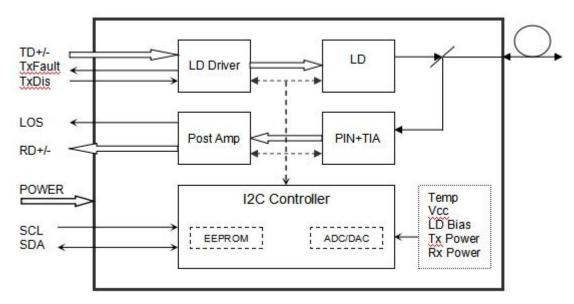
SFP+

ESB23X6-3LCD20

14.025Gbps SFP+ BIDI Transceiver, Single Mode, 20km Reach 1330nm TX / 1270nm RX

- > Supports up to 14.025Gbps bit rates
- Hot-pluggable SFP+ footprint
- > 1330nm DFB laser and PIN photodiode, Up to 20km for SMF transmission
- > Compliant with SFP+ MSA and SFF-8472 with single LC receptacle
- Compatible with RoHS
- ➤ Single +3.3V power supply
- Real Time Digital Diagnostic Monitoring
- Operating case temperature:Standard: 0 to +70°C

Applications


> 4.25/8.5/14.025G Fibre channel

Description

The SFP+ transceivers are high performance, cost effective modules supporting data rate of 14.025Gbps and 20km transmission distance with SMF.

The transceiver consists of three sections: a DFB laser transmitter, a PIN photodiode integrated with a trans-impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement and SFF-8472 digital diagnostics functions.

Transceiver functional diagram

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	4.5	V
Storage Temperature	Ts	-40	+85	°C
Operating Humidity	-	5	85	%

Recommended Operating Conditions

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	Тс	0		+70	°C
Power Supply Voltage	Vcc	3.135	3.30	3.465	V
Power Supply Current	Icc			350	mA
Data Rate			14.025		Gbps

Optical and Electrical Characteristics

Parameter		Symbol	Min	Typical	Max	Unit	Notes		
	Transmitter								
Centre V	Vavelength	λς	1320	1330	1340	nm			
Spectral W	idth (-20dB)	Δλ			1	nm			
Side-Mode Su	uppression Ratio	SMSR	30	-		dB			
Average C	Output Power	P _{out}	-3		+2	dBm	1		
Extinct	tion Ratio	ER	3.5			dB			
Data Input Sv	wing Differential	VIN	180		850	mV	2		
Input Differer	ntial Impedance	Z _{IN}	90	100	110	Ω			
TX Disable	Disable		2.0		Vcc	V			
1 X Disable	Enable		0		0.8	V			
TV Fault	Fault		2.0		Vcc	V			
TX Fault	Normal		0		0.8	V			
			Receiv	er					
Centre V	Centre Wavelength		1260	1270	1280	nm			
Receive	Receiver Sensitivity				-14	dBm	3		
Receive	Receiver Overload		0.5			dBm	3		
LOS	LOS De-Assert				-15	dBm			
LOS Assert		LOSA	-30			dBm			
LOS Hysteresis			0.5			dB			
Data Output Swing Differential		V _{out}	300		900	mV	4		
			2.0		Vcc	V			
	.OS	Low			0.8	V			

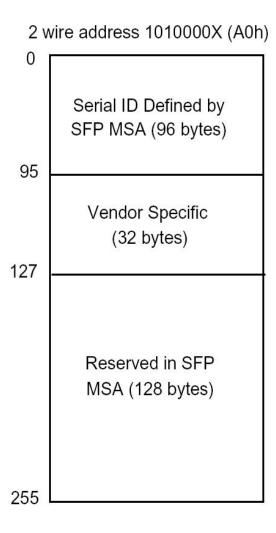
Notes:

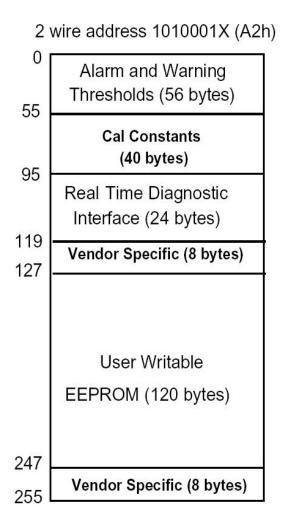
- 1. The optical power is launched into SMF.
- 2. PECL input, internally AC-coupled and terminated.
- 3. Measured with a PRBS 2^{31} -1 test pattern @14025Mbps, BER $\leq 1 \times 10^{-12}$.
- 4. Internally AC-coupled.

Timing and Electrical

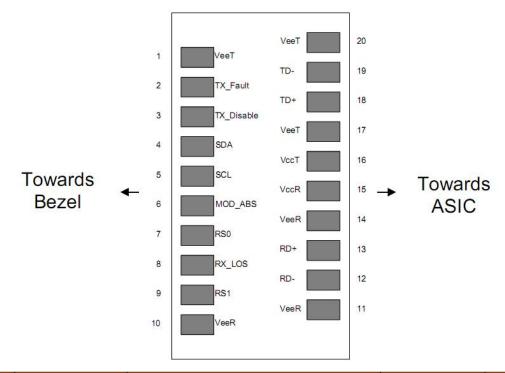
Parameter	Symbol	Min	Typical	Max	Unit
Tx Disable Negate Time	t_on			1	ms
Tx Disable Assert Time	t_off			10	μs
Time To Initialize, including Reset of Tx Fault	t_init			300	ms
Tx Fault Assert Time	t_fault			100	μs
Tx Disable To Reset	t_reset	10			μs
LOS Assert Time	t_loss_on			100	μs
LOS De-assert Time	t_loss_off			100	μs
Serial ID Clock Rate	f_serial_clock		100	400	KHz
MOD_DEF (0:2)-High	V _H	2		Vcc	V
MOD_DEF (0:2)-Low	VL			0.8	V

Diagnostics


Parameter	Range	Unit	Accuracy	Calibration
Temperature	0 to +70	°C	±3°C	Internal
Voltage	3.0 to 3.6	V	±3%	Internal
Bias Current	0 to 100	mA	±10%	Internal
TX Power	-3 to +2	dBm	±3dB	Internal
RX Power	-16 to +1	dBm	±3dB	Internal


Digital Diagnostic Memory Map

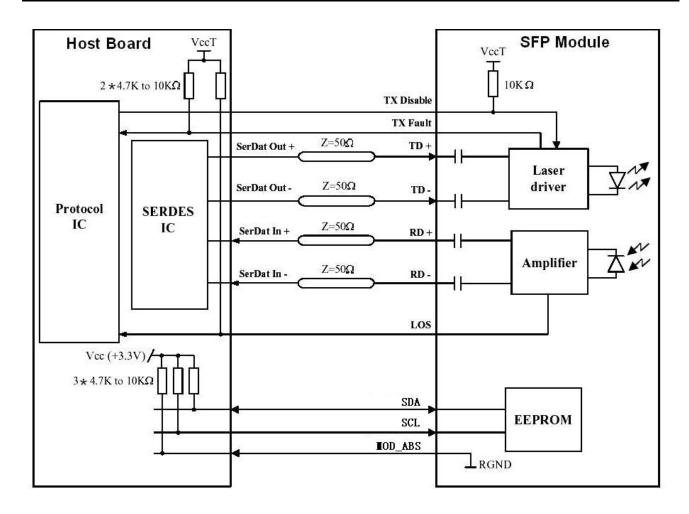
The transceivers provide serial ID memory contents and diagnostic information about the present operating conditions by the 2-wire serial interface (SCL, SDA).


The diagnostic information with internal calibration or external calibration all are implemented, including received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring.

The digital diagnostic memory map specific data field defines as following.

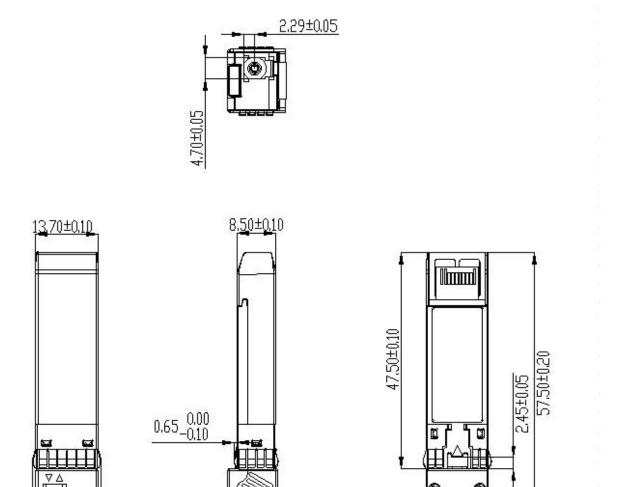
Pin Descriptions

Pin	Signal Name	Description	Plug Seq.	Notes
1	V _{EET}	Transmitter Ground	1	
2	TX FAULT	Transmitter Fault Indication	3	Note 1
3	TX DISABLE	Transmitter Disable	3	Note 2
4	SDA	SDA Serial Data Signal	3	
5	SCL	SCL Serial Clock Signal	3	
6	MOD_ABS	Module Absent. Grounded within the module	3	
7	RS0	Not Connected	3	
8	LOS	Loss of Signal	3	Note 3
9	RS1	Not Connected	3	
10	V _{EER}	Receiver ground	1	
11	V _{EER}	Receiver ground	1	
12	RD-	Inv. Received Data Out	3	Note 4
13	RD+	Received Data Out	3	Note 4
14	V _{EER}	Receiver ground	1	
15	V _{CCR}	Receiver Power Supply	2	
16	V _{CCT}	Transmitter Power Supply	2	
17	V _{EET}	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 5
19	TD-	Inv. Transmit Data In	3	Note 5
20	V _{EET}	Transmitter Ground	1	


Notes:

Plug Seq.: Pin engagement sequence during hot plugging.

1) TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between


- 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; Logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2) Laser output disabled on TDIS >2.0V or open, enabled on TDIS <0.8V.
- 3) LOS is open collector output. Should be pulled up with 4.7k~10kΩ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.
- 4) RD-/+: These are the differential receiver outputs. They are internally AC-coupled 100 differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 5) TD-/+: These are the differential transmitter inputs. They are internally AC-coupled, differential lines with 100Ω differential termination inside the module.

Recommended Interface Circuit

13.90±0.10

Mechanical Dimensions

Ordering information

14.40

Part Number	Product Description				
ESB32X6-3LCD20	1330T/1270R,	14.025Gbps,	LC,	20km,	0°C~+70°C, with DDM

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.


Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Packaging

ETU-Link provides two kinds of packaging, 10pcs/Tray and individual package.

Company: ETU-Link Technology Co., LTD

Address: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street, Longhua District,

Shenzhen city, GuangDongProvince,China 518109

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com.

Please e-mail us at sales@etulinktechnology.com or call us for assistance.