

SFP+

ESBxxX-3LID60

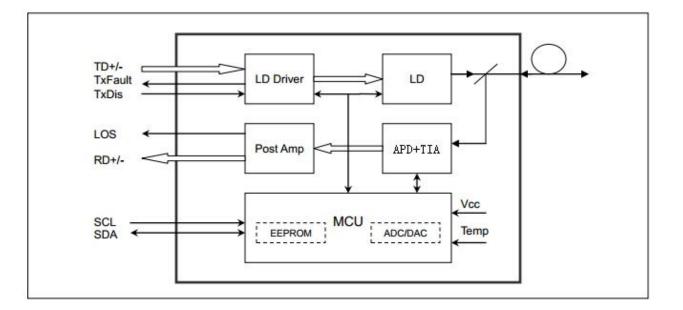
10Gbps SFP+ Bi-Directional Transceiver, 60km Reach Tx1270/1330nm / Rx1330/1270nm

- Supports 9.95Gb/s to 10.3Gb/s data rates
- > Simplex LC Connector Bi-Directional SFP+ Optical Transceiver
- Single 3.3V Supply
- Up to 60km on 9/125um SMF
- > A: 1270nm DFB Laser transmitter,1330nm APD receiver
- B: 1330nm DFB Laser transmitter, 1270nm APD receiver
- SFP+ MSA SFF-8431 Compliant
- Digital Diagnostic SFF-8472 Compliant
- RoHS compliant and Lead Free
- Operating case temperature:-40 to 85°C

Applications

- > 10GBASE-LR at 10.3125Gbps
- > 10GBASE-LW at 9.953Gbps
- Other Optical Links

Standard


- SFP+ MSA Compliant
- SFF-8472 reversion 9.5 compliant
- IEEE802.3-2005 compliant
- > Telcordia GR-468-CORE compliant
- FCC 47 CFR Part 15,Class B compliant
- FDA 21 CFR 1040.10 and 1040.11, class1 compliant
- RoHS compliant

Product Description

The ESBxxX-3LID60 series single mode transceiver is small form factor pluggable module for duplex optical data communications such as 10GBASE-ER/EW defined by IEEE 802.3ae. It is with the SFP+ 20-pin connector to allow hot plug capability.

The ESBxxX-3LID60 module is designed for single mode fiber and operates at a nominal wavelength of 1270nm or 1330nm;.The transmitter section uses a multiple quantum well DFB, which is class 1 laser compliant according to International Safety Standard IEC-60825.The receiver section consists of a APD photodiode integrated with a TIA.

Functional Diagram

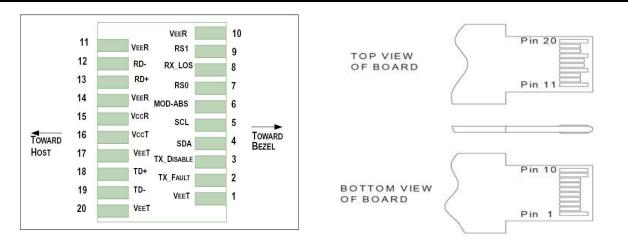
Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.7	V	
Storage Temperature	TS	-40		85	°C	
Case Operating Temperature	Tcase	-40		85	°C	

2

Optical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Transmitter						
Output Opt. Pwr	POUT	1		5	dBm	1
Optical Wavelength	λ		1270/1330		nm	
Wavelength Temperature Dependence			0.08	0.125	nm/°C	
Spectral Width (-20dB)	σ			1	nm	
Optical Extinction Ratio	ER	3.5			dB	
Transmitter and Dispersion Penalty	TDP			3.2	dB	
Optical Rise/Fall Time	tr/ tf		0.1	0.26	ns	
RIN	RIN			-128	dB/Hz	
Output Eye Mask		Complia	int with IEEE 08	302.3ae		
Receiver						
Rx Sensitivity	RSENS			-20.	dBm	2
Input Saturation Power (Overload)	Psat	-9			dBm	
Wavelength Range	λ _c		1330/1270		nm	
LOS De -Assert	LOSD			-25	dBm	
LOS Assert	LOSA	-30			dBm	
LOS Hysteresis		0.5	1.0		dB	


Note:

1) TD+/- are internally AC coupled with 100Ω differential termination inside the module.

 Tx Fault and Rx LOS are open collector outputs, which should be pulled up with 4.7k to 10kΩ resistors on the host board. Pullup voltage between 2.0V and Vcc+0.3V.

3) RD+/- outputs are internally AC coupled, and should be terminated with 100Ω (differential) at the user SERDES.

Pin Assignment

Pin out of Connector Block on Host Board

Pin	Symbol	Name/Description	Ref.
1	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault.	2
3	T	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	Rate Select 0	5
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	6
9	RS1	No connection required	1
10	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V	Transmitter Ground (Common with Receiver Ground)	1

Notes:

1) Circuit ground is internally isolated from chassis ground.

2) T_{FAULT} is an open collector/drain output, which should be pulled up with a 4.7k – 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V.A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.</p>

3) Laser output disabled on T_{DIS} >2.0V or open, enabled on T_{DIS} <0.8V.

 Should be pulled up with 4.7kΩ- 10kΩ host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.

5) Internally pulled down per SFF-8431 Rev 4.1.

LOS is open collector output. It should be pulled up with 4.7kΩ – 10kΩ on host board to a voltage between 2.0V and 3.6V.
Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Electrical Interface Characteristics

Parameter	Symbol	Min	Тур	Мах	Unit	Ref.
Supply Voltage	Vcc	3.14	3.3	3.46	V	
Supply Current	Icc			300	mA	
Transmitter						
Input differential impedance	Rin		100		Ω	1
Single ended data input swing	Vin,pp	180		700	mV	
Transmit Disable Voltage	VD	Vcc–1.3		Vcc	V	
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	V	2
Transmit Disable Assert Time				10	us	
Receiver						
Differential data output swing	Vout,pp	300		850	mV	3
Data output rise time	tr	28			ps	4
Data output fall time	tf	28			ps	4
LOS Fault	VLOS fault	Vcc–1.3		VccHOST	V	5
LOS Normal	VLOS norm	Vee		Vee+0.8	V	5
Power Supply Rejection	PSR	100			mVpp	6

Notes:

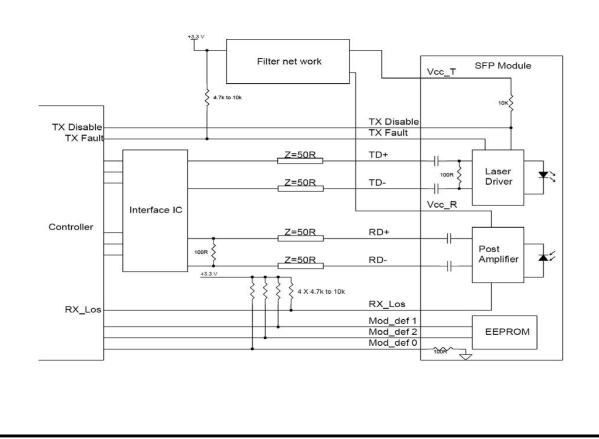
- 1) Connected directly to TX data input pins. AC coupled thereafter.
- 2) Or open circuit.
- 3) Into 100 ohms differential termination.
- 4) 20-80 %.
- 5) Loss Of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6) Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

SFP+ Module Control and Management

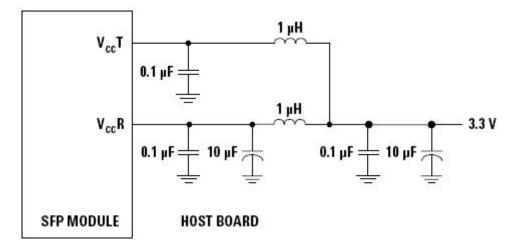
The SFP modules implement the 2-wire serial communication protocol as defined in the SFP MSA. The serial ID information of the SFP modules and Digital Diagnostic Monitor parameters can be accessed through the I2C interface at address A0h and A2h. The memory is mapped in Table

1. Detailed ID information(A0h) is listed in Table

2. And the DDM specification (A2h) is described in Table 3. For more details of the memory map and byte definitions please refer to the SFF-8472 (Rev 9.3, Aug. 2002), "Digital Diagnostic Monitoring Interface for Optical Transceivers".

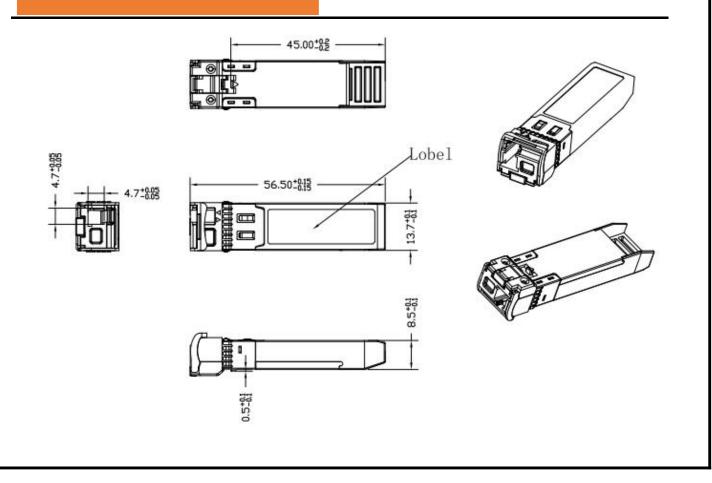

Table 1- Digital Diagnostic Memory Map (Specific Data Field Descriptions)

2	wire address 1010000X (A0h)	2 wire address 1010001X (A2h)	
Address	Information	Address	Information
0~95	Social ID Defined by SED MSA (06 bytes)	0~55	Alarm and Warning Thresholds (56 bytes)
0~95	Serial ID Defined by SFP MSA (96 bytes)	56~ <mark>9</mark> 5	Calibration Constants (40 bytes)
00 407		96~119	Real Time Diagnostic Interface (24 bytes)
96~127	Vendor Specific (32 bytes)	120~127	Vender Specific (8 bytes)
100-055	Baseried SEE0070 (439 hites)	128~247	User Writable EEPROM (120 bytes)
128~255	Reserved,SFF8079 (128 bytes)	248~255	Vender Specific (8 bytes)


Table 2- DDM Specification

Parameter	Range	Accuracy	Calibration
Temperature	-10 ~ +80°C	±3°C	Internal
Voltage	3.0 ~ 3.6V	±3%	Internal
Bias Current	$0 \sim 85 \text{mA}$	±10%	Internal
TX Power	$-5 \sim 3 dBm$	±2dB	Internal
RX Power	-15 \sim 0dBm	±2dB	Internal

Typical Interface Circuit



Digital Diagnostic Functions

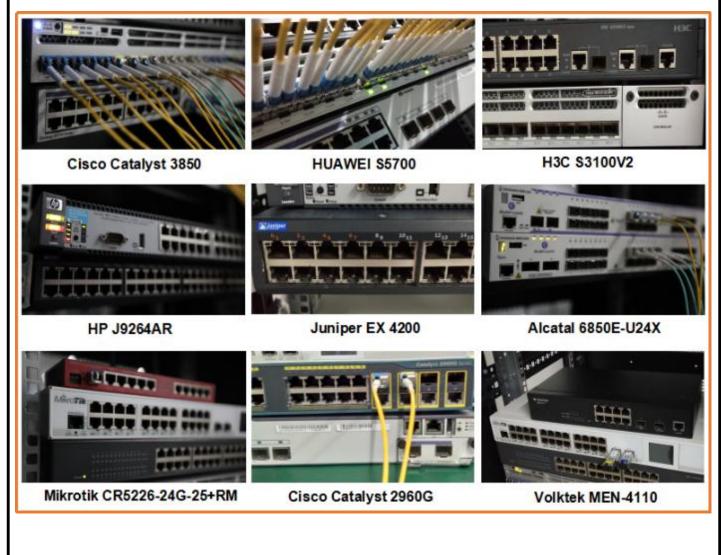
Note: Inductors with DC resistance of less than 1Ω should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30 mA greater than the steady state value.

Package Dimensions

7

General Operating Characteristics

Para	meter	Symbol	Min	Тур	Max	Unit	Ref.
Data Data	10G Base-LR			10.3125		Gb/s	
Data Rate 10G Bas	10G Base-LW			9.953		GD/S	
Supply	Voltage	Vcc	3.13	3.3	3.5	v	
Supply	Current	lcc			280	mA	


Regulatory Compliance

Feature	Reference	Performance
Electrostatic discharge (ESD)	IEC/EN 61000-4-2	Compatible with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN 55022 Class B	Compatible with standards
	(CISPR 22A)	
Laser Eye Safety	FDA 21CFR 1040.10, 1040.11 IEC/EN	Class 1 laser product
	60825-1, 2	
Component Recognition	IEC/EN 60950, UL	Compatible with standards
ROHS	2002/95/EC	Compatible with standards
EMC	EN61000-3	Compatible with standards

Compatibility Test

In order to ensure the product compatibility, our products will be tested on the switch before shipment. Our modules can compatible with many mainstream brand switches, such as Cisco, Juniper, Extreme, Brocade, IBM, H3C, HP, Huawei, D-Link, Mikrotik, ZTE, TP-Link...

Our test equipment: VOLKTEK MEN-4110, HP 2530-8G, CRS226-24G-25+RM, Catalyst 2960G Series, Catalyst 3850 XS 10G SFP+, Catalyst 3750-E Series, HUAWEI S5700Series, H3C S3100V2 Series, Juniper-EX4200, etc.

Product Production Process


Quality Assurance

Continuous introduction of new equipment, produced by strict standards, strict quality inspection, to guarantee the high quality standard of each product.

Product Final Test

Product Initial Test

10

<section-header>

Company: ETU-Link Technology Co., LTD Address:4th Floor, C Building, JinBoLong Industrial Park, QingQuan Road, LongHua District, Shenzhen city, GuangDong Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.

Fiber Optic Transceivers Copyright 2011—2017 etulinktechnology.com All Rights Reserved