

ESP3106-20D(I)

622Mbps SFP Optical Transceiver, 20KM Reach

PRODUCT FEATURES

- Up to 622Mbps data-rate
- > 1310nm FP laser and PIN photo detector for 20km transmission
- ➤ Compliant with SFP MSA and SFF-8472 with duplex LC receptacle
- Digital Diagnostic Monitoring:
- Internal Calibration or External Calibration
- Compatible with RoHS
- > +3.3V single power supply
- Operating case temperature:

Standard: 0 to +70°C

Extended: -20 to +75°C

Industrial: -40 to +85°C

Control of the state of the sta

APPLICATIONS

- SDH STM-4, S-4.1
- ➤ SONET OC-12 IR1
- Other optical links

DESCRIPTIONS

The SFP transceivers are high performance, cost effective modules supporting data-rate of 622Mbps and 20km transmission distance with SMF.

The transceiver consists of three sections: a FP laser transmitter, a PIN photodiode integrated with a trans-

impedance preamplifier (TIA) and MCU control unit. All modules satisfy class I laser safety requirements.

The transceivers are compatible with SFP Multi-Source Agreement (MSA) and SFF-8472. For further information, please refer to SFP MSA.

Module Block Diagram TD+/TxFault TxDis LOS RD+/SCL SDA Post Amp PIN+TIA PIN+TIA TEEPROM MCU ADC/DAC Temp

Ordering Information

Part No.	Data Rate(optical)	Laser	Fiber Type	Distance	Optical Interface	Temp	DDMI	Latch Color
ESP3106-20D	622Mbps	FP	SMF	20KM	LC	0~70°C	Υ	Blue
ESP3106-20DE	622Mbps	FP	SMF	20KM	LC	-20~75°C	Υ	Blue
ESP3106-20DI	622Mbps	FP	SMF	20KM	LC	-40~85°C	Υ	Blue

Absolute Maximum Ratings

Parameter	Symbol	Min	Тур	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.7	V	
Storage Temperature	TS	-40		85	°C	
Case Operating Temperature	TOP	0		70	°C	

Recommended Operating Conditions

Optical Communications Products Alliance

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Coop Operating Townsrature	Ton	0	-	70	٠,	Commercial
Case Operating Temperature	Тор	-40		85	°C	Industrial
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Transmission Distance	TD	-	-	20	km	Over SMF

Electrical Characteristics (TOP = 0 to 70□, VCC = 3.15 to 3.60Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.	
Supply Voltage	Vcc	3.15	3.3	3.6	V		
Supply Current	lcc		185	250	mA		
Transmitter							
Input differential impedance	Rin		100		Ω	1	
Single ended data input swing	Vin,pp	250		1200	mV		
Transmit Disable Voltage	VD	Vcc-1.3		Vcc	V		
Transmit Enable Voltage	VEN	Vee		Vee+ 0.8	V	2	
Transmit Disable Assert Time				10	us		
	R	eceiver					
Single ended data output swing	Vout,pp	250		800	mV	3	
Data output rise time	tr		100	175	ps	4	
Data output fall time	tf		100	175	ps	4	
LOS Fault	VLOS fault	Vcc-0.5		VccHOST	V	5	
LOS Normal	VLOS norm	Vee		Vee+0.5	V	5	
Power Supply Rejection	PSR	100			mVpp	6	

Notes:

- 1. Connected directly to TX data input pins. AC coupled thereafter.
- 2. Or open circuit.
- 3. into 100 ohms differential termination.
- 4. 20 80 %
- 5. Loss Of Signal is LVTTL. Logic 0 indicates normal operation; logic 1 indicates no signal detected.
- 6. Receiver sensitivity is compliant with power supply sinusoidal modulation of 20 Hz to 1.5 MHz up to specified value applied through the recommended power supply filtering network.

Optical and Characteristics (TOP = 0 to 70°C, VCC = 3.15 to 3.60Volts)

Parameter	Symbol	Min	Тур	Max	Unit	Ref.	
Transmitter							
Output Opt. Pwr (End of Life)	POUT	-14.0		-8.0	dBm	1	
Optical Wavelength	λ	1260	1310	1360	nm		
Wavelength Temperature Dependence			0.08	0.125	nm/°C		
Spectral Width (-20dB)	σ			3.0	nm		
Optical Extinction Ratio	ER	10			dB		
Optical Rise/Fall Time	tr/ tf		100	160	ps		

Optical Communications Products Alliance

RIN	RIN			-120	dB/Hz	
Transmitter Jitter (peak to peak)				100	ps	
F	Receiver					
Average Rx Sensitivity @ Gigabit Ethernet	RSENS3			-28.0	dBm	2
Maximum Input Power	PMAX	-3.0			dBm	
Optical Center Wavelength	λС	1260	1310	1620	nm	
LOS De - Assert	LOSD			-30	dBm	
LOS Assert	LOSA	-40			dBm	
LOS Hysteresis			1.0		dB	
Receiver Jitter Generation @622Mbps			4	160	ps	3

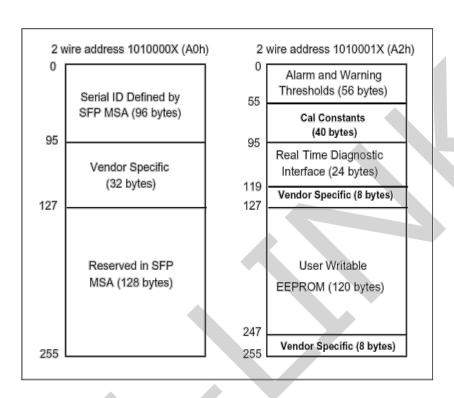
Notes:

- 1. Class 1 Laser Safety per FDA/CDRH and IEC-825-1 regulations.
- 2. with worst-case extinction ratio. Measured with a PRBS 27-1 test pattern, @622Mb/s, BER<10-12.
- 3. Jitter added by receiver (peak to peak). Measured at -18.0dBm average Rx sensitivity, PRBS 27-1 test pattern.

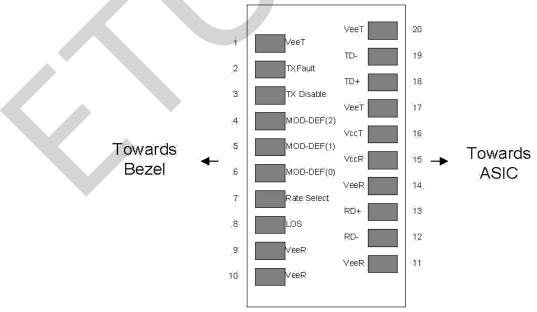
Digital Diagnostics

ETU-LINK ESP3106-20D(I) transceivers support the 2-wire serial communication protocol as defined in the SFP MSA1. It is very closely related to the EEPROM defined in the GBIC standard, with the same electrical specifications.

The standard SFP serial ID provides access to identification information that describes the transceiver's capabilities, standard interfaces, manufacturer, and other information. Additionally, ETU-LINK SFP transceivers provide a unique enhanced digital diagnostic monitoring interface, which allows real-time access to device operating parameters such as transceiver temperature, laser bias current, transmitted optical power, and received optical power and transceiver supply voltage. It also defines a sophisticated system of alarm and warning flags, which alerts endusers when particular operating parameters are outside of a factory set normal range.


The SFP MSA defines a 256-byte memory map in EEPROM that is accessible over a 2-wire serial interface at the 8 bit address 1010000X (A0h). The digital diagnostic monitoring interface makes use

Of the 8 bit address 1010001X (A2h), so the originally defined serial ID memory map remains unchanged. The interface is identical to, and is thus fully backward compatible with both the GBIC Specification and the SFP Multi Source Agreement.

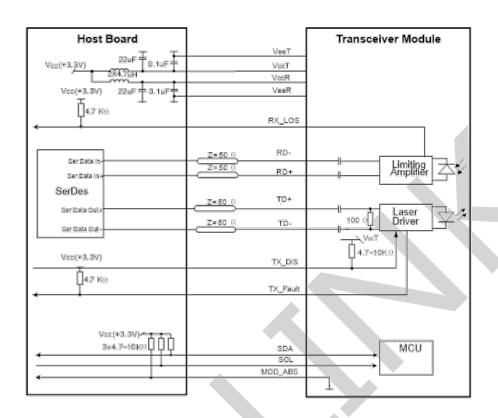

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Transceiver Controller (DDTC) inside the transceiver, which is accessed through a 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL, Mod Def 1) is generated by the host. The positive edge clocks data into the SFP transceiver into those segments of the E2PROM that are not write-protected. The negative edge clocks

data from the SFP transceiver. The serial data signal (SDA, Mod Def 2) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. Digital diagnostics for the ES3106-3LCD20 are internally calibrated by default.

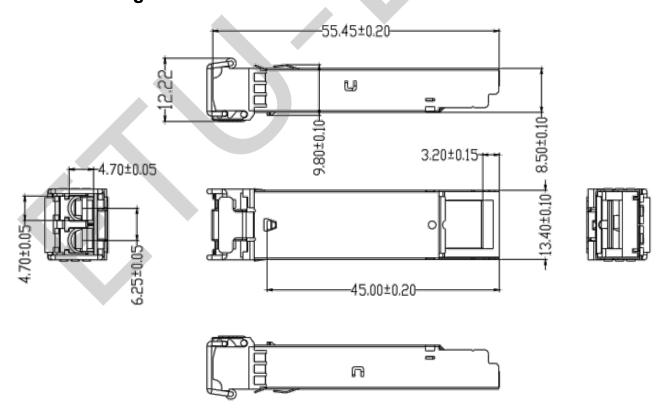
Pin Diagram

Pinout of Connector Block on Host Board

Pin Definitions


Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground (Common with Receiver Ground)	1
2	T	Transmitter Fault.	2
3	T _{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	MOD_DEF(2)	Module Definition 2. Data line for Serial ID.	4
5	MOD_DEF(1)	Module Definition 1. Clock line for Serial ID.	4
6	MOD_DEF(0)	Module Definition 0. Grounded within the module.	4
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
10	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
11	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled	
13	RD+	Receiver Non-inverted DATA out. AC Coupled	
14	V _{EER}	Receiver Ground (Common with Transmitter Ground)	1
15	V _{CCR}	Receiver Power Supply	
16	V _{CCT}	Transmitter Power Supply	
17	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V _{EET}	Transmitter Ground (Common with Receiver Ground)	1

Notes:


- 1. Circuit ground is internally isolated from chassis ground.
- 2. TFAULT is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on TDIS>2.0V or open, enabled on TDIS<0.8V.
- 4. Should be pulled up with 4.7k 10kohms on host board to a voltage between 2.0V and 3.6V. MOD_DEF (0) pulls line low to indicate module is plugged in.
- 5. LOS is open collector output. Should be pulled up with 4.7k 10 kohms on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.

Recommended Interface Circuit

Mechanical Diagram

Revision History

Version No.	Date	Description
1.0	February 18, 2015	Preliminary datasheet
2.0	September 28,2018	Product upgrades
3.0	July 29, 2024	Format change

Company: ETU-Link Technology Co., LTD

Production base: Right side of 3rd floor, No. 102 building, Longguan expressway, Dalang street,

Longhua District, Shenzhen city, GuangDongProvince,China 518109

R&D base: Floor 4, Building 4, Nanshan Yungu Phase LI, Taoyuan Community, XiliStreet, Nanshan District,

Shenzhen

Tel: +86-755 2328 4603

Addresses and phone number also have been listed at www.etulinktechnology.com. Please e-mail us at sales@etulinktechnology.com or call us for assistance.

